精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EFBC交AB的延长线于点E,交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=
4
5
,CF=1,求⊙O的半径及EF的长.
(1)证明:连接OD;
∵AB是直径,
∴∠ACB=90°;
∵EFBC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴ODAF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.

(2)连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF△ABD△ADF,
CF
CD
=
BD
AB
CF
DF
=
DF
AF

∵sin∠ABC=
AC
AB
=
4
5

∴设AC=4x,AB=5x,
1
a
=
a
5x
a2=5x,
∴在Rt△CDF中DF2=CD2-CF2=5x-1;
又∵
CF
DF
=
DF
AF

∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EFBC,
∴△ABC△AEF,
AB
AE
=
AC
AF
10
AE
=
8
9
AE=
45
4

∴在Rt△AEF中,EF=
AE2-AF2
=
(
45
4
)
2
-92
=
27
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,PA,PB分别是⊙O的切线,A,B分别为切点,点E是⊙O上一点,且∠AEB=60°,则∠P为(  )
A.120°B.60°C.30°D.45°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC中,∠C=90°,AB切⊙O于D,且DEBC,已知AE=2
2
,AC=3
2
,BC=6,则圆O的半径是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=
3
,BC=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O半径为8cm,点A为半径OB延长线上一点,射线AC切⊙O于点C,弧BC的长为
8
3
π
cm,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA与⊙O相切于点A,PC经过⊙O的圆心且与该圆相交于两点B、C,若PA=4,PB=2,则sinP=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙M与x轴相切于原点,平行于y轴的直线交圆于P、Q两点,P点在Q点的下方.若P点的坐标是(2,1),求圆心M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径等于4,tan∠ACB=
4
3
,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=
1
2
,求cos∠ACB的值和线段PE的长.

查看答案和解析>>

同步练习册答案