精英家教网 > 初中数学 > 题目详情
(2012•雨花台区一模)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,D是BC边上一点,CD=3cm,点P为边AC上一动点(点P与A、C不重合),过点P作PE∥BC,交AD于点E.点P以1cm/s的速度从A到C匀速运动.
(1)设点P的运动时间为t(s),DE的长为y(cm),求y关于t的函数关系式,并写出t的取值范围;
(2)当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时∠DPE的正切值;
(3)将△ABD沿直线AD翻折,得到△AB’D,连接B’C.如果∠ACE=∠BCB’,求t的值.
分析:(1)先根据勾股定理求得AD的长,又由平行线分线段成比例定理求得DE的长,则可得y与x的关系;
(2)因为当以PE为半径的⊙E与DB为半径的⊙D外切时,有DE=PE+BD,所以可以求得t的值,即可求得PC的长,则在Rt△PCD中,根据三角函数的性质即可求得tan∠DPE的值;
(3)首先由有两角对应相等的三角形相似,即可证得:△ACD∽△BFD与△ACE∽△BCB′,又由相似三角形对应边成比例,即可求得AP的值.
解答:解:(1)∵在Rt△ABC中,AC=4,CD=3,
∴AD=5,
∵PE∥BC,AP=t,
AP
AC
=
AE
AD

t
4
=
AE
5

∴AE=
5
4
t,
∴DE=5-
5
4
t,
∴y=5-
5
4
t,(0<t<4);

(2)连接PD,
当以PE为半径的⊙E与DB为半径的⊙D外切时,有DE=PE+BD,即5-
5
4
t=
3
4
t+2,
解得:t=
3
2

则PC=
5
2

∵PE∥BC,
∴∠DPE=∠PDC,
在Rt△PCD中,
tan∠PDC=
PC
CD
=
5
2
3
=
5
6

则tan∠DPE=
5
6


(3)延长AD交BB′于F,则AF⊥BB′,
则∠ACD=∠BFD,
∵∠ADC=∠FDB,
∴∠CAD=∠FBD,
∴△ACD∽△BFD,
∴BF=
8
5

∴BB′=
16
5

∵∠ACE=∠BCB′,∠CAE=∠CBB′,
∴△ACE∽△BCB′,
∴AE=
64
25

∴t=AP=
256
125
点评:此题考查了相似形的综合,用到的知识点是相似三角形的判定与性质,以及旋转的性质,三角函数等.此题难度适中,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•雨花台区一模)如图,已知点G是梯形ABCD的中位线EF上任意一点,若梯形ABCD的面积为20cm2,则图中阴影部分的面积为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•雨花台区一模)在今年清明节期间,某中学组织全校学生到雨花台烈士陵园扫墓并参观了一些景点,进行了“爱国爱家乡”教育.为了解学生就学校统一组织参观过的5个景点的喜爱程度,随机抽取该校部分学生进行问卷调查(每人应选且只能选一个景点),数据整理后,绘制成如下的统计图:
请根据统计图提供的信息回答下列问题:
(1)本次随机抽样调查的样本容量是
300
300

(2)本次随机抽样调查的统计数据中,男生最喜爱景点的众数是
30
30
名;
(3)估计该校女生最喜爱竹林的约占全校学生数的
15
15
%;
(4)如果该校共有1600名学生,而且七、八年级学生人数总和比九年级学生人数的2倍还多250名,试通过计算估计该校九年级学生最喜爱生态密林的人数约为多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•雨花台区一模)在等边三角形、平行四边形、正方形、圆、正七边形这五个图形中,既是中心对称图形又是轴对称图形的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•雨花台区一模)2012年2月29日,国务院批准发布的《环境空气质量标准》中,增加了细颗粒物(PM2.5)年均、日均浓度限值.2012年3月30日江苏省环境监测中心公布了全省17个PM2.5监测点的日均值如下(单位:微克/立方米):94,141,118,60,88,84,66,66,73,78,89,149,130,131,113,97,180.该组数据的极差和中位数分别是(  )

查看答案和解析>>

同步练习册答案