证明:过D作DN⊥AC,垂足为N,连接DB、DC,
则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),
又∵DF⊥AB,DN⊥AC,
∴∠DFB=∠DNC=90°,
在Rt△DBF和Rt△DCN中
∵
,
∴Rt△DBF≌Rt△DCN(HL)
∴BF=CN,
在Rt△DFA和Rt△DNA中
∵
,
∴Rt△DFA≌Rt△DNA(HL)
∴AN=AF,
∴BF=AC+AN=AC+AF,
即BF=AF+AC.
分析:过D作DN⊥AC,垂足为N,连接DB、DC,推出DN=DF,DB=DC,根据HL证Rt△DBF≌Rt△DCN,推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.
点评:本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.