精英家教网 > 初中数学 > 题目详情
在等边三角形ABC中,AD⊥BC于点D.
(1)如图1,请你直接写出线段AD与BC之间的数量关系:AD=
 
BC;
(2)如图2,若P是线段BC上一个动点(点P不与点B、C重合),联结AP,将线段AP绕点A逆时针旋转60°,得到线段AE,联结CE,猜想线段AD、CE、PC之间的数量关系,并证明你的结论;
(3)如图3,若点P是线段BC延长线上一个动点,(2)中的其他条件不变,按照(2)中的作法,请在图3中补全图形,并直接写出线段AD、CE、PC之间的数量关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知下列说法:①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线相等的梯形是等腰梯形;④对角线互相垂直、平分且相等的四边形是正方形.其中,正确的说法有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,∠B=50°,若沿图中虚线剪去∠B,则∠1+∠2等于(  )
A、130°B、230°C、270°D、310°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图①,在△ABC中,∠C=90°,∠BAC=60°,AC=1,以AB为一边在△ABC的异侧作正方形ABDE,△AFG是由△ABC绕点A旋转而得,且点F,A,C在同一条直线上.

(1)设FG与AE的交点为H,求AH的长;
(2)若将△AFG沿着射线AB方向平移,当△AFG与正方形ABDE没有重叠部分时停止移动,设平移的距离为m,△AFG与正方形ABDE重叠部分的面积为S.请直接写出S与m之间的函数关系式以及自变量m的取值范围;
(3)如图②,将△ABC绕点A顺时针旋转α°(0<α<180),记旋转中的△ABC为△AB′C′,在旋转过程中,设B′C′所在的直线与直线BC交于点P,与直线AB交于点Q,是否存在这样的α,使△BPQ为等腰三角形?若存在,求出此时α的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.
(1)操作发现:在线段BC上取一点M,连接AM,若AD平分∠BAM,则∠MAE与∠EAC的数量关系是
 

(2)猜想论证:当0°<α<45°时,线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.小颖和小亮想出了两种不同的方法进行解决:
小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的想法:将△ABD绕点A顺时针旋转90°得到△ACG,连接EG(如图3);
请你从中任选一种方法进行证明;
(3)拓展探究:继续旋转三角板,当135°<α<180°时(如图4),试探究线段BD、CE、DE之间的关系,请直接写出写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.

解决问题:
(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.
(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=
3
,AC=
2

①求
BE′
AD′
的值及∠BFA的度数;
②若D为AC的中点,求△AOC面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

一个菱形两条对角线之比为1:2,一条较短的对角线长为4cm,那么菱形的边长为(  )
A、2cm
B、4cm
C、(2+2
5
)cm
D、2
5
cm

查看答案和解析>>

科目:初中数学 来源: 题型:

菱形的两条对角线长分别为6cm和8cm,则菱形的边长是(  )
A、10cmB、7cmC、5cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

对于一组数据:1.4,1.6,1.5,1.7,1.6,下列说法正确的是(  )
A、中位数是1.5B、平均数是1.6C、极差是0.1D、众数是1.6

查看答案和解析>>

同步练习册答案