1£®µçÓ°¡¶ÁõÈý½ã¡·ÖУ¬Ðã²ÅºÍÁõÈý½ã¶Ô¸èµÄ³¡ÃæÊ®·Ö¾«²Ê£®ÂÞÐã²Å³ªµÀ£º¡°Èý°ÙÌõ¹·½»¸øÄ㣬һÉÙÈý¶àËÄÏ·֣¬
²»ÒªË«ÊýÒªµ¥Êý£¬¿´ÄãÔõÑù·ÖµÃ¾ù£¿¡±ÁõÈý½ãʾÒâÖÛÃÃÀ´´ð£¬ÖÛÃóªµÀ£º¡°¾ÅÊ®¾ÅÌõ´òÁÔÈ¥£¬¾ÅÊ®¾ÅÌõ¿´ÑòÀ´£¬¾ÅÊ®¾ÅÌõÊØÃſڣ¬Ê£ÏÂÈýÌõ²ÆÖ÷ÇëÀ´µ±Å«²Å£®¡±ÈôÓÃÊýѧ·½·¨½â¾öÂÞÐã²ÅÌá³öµÄÎÊÌ⣬Éè¡°Ò»ÉÙ¡±µÄ¹·ÓÐxÌõ£¬¡°Èý¶à¡±µÄ¹·ÓÐyÌõ£¬Ôò½â´ËÎÊÌâËùÁйØÏµÊ½ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}x+3y=300\\ 0£¼x£¼y£¼300\end{array}\right.$
B£®$\left\{\begin{array}{l}{x+3y=300}\\{0£¼x£¼y£¼300}\\{x¡¢yÊÇÆæÊý}\end{array}\right.$
C£®$\left\{\begin{array}{l}{x+3y=300}\\{0£¼3x=y£¼300}\\{x¡¢yÊÇÆæÊý}\end{array}\right.$
D£®$\left\{\begin{array}{l}{x+3y=300}\\{0£¼x£¼300£¬0£¼y£¼300}\\{x¡¢yÊÇÆæÊý}\end{array}\right.$

·ÖÎö ¸ù¾ÝÒ»ÉÙÈý¶àËÄÏ·֣¬²»ÒªË«ÊýÒªµ¥Êý£¬Áгö²»µÈʽ×é½â´ð¼´¿É£®

½â´ð ½â£ºÉè¡°Ò»ÉÙ¡±µÄ¹·ÓÐxÌõ£¬¡°Èý¶à¡±µÄ¹·ÓÐyÌõ£¬¿ÉµÃ£º$\left\{\begin{array}{l}{x+3y=300}\\{0£¼x£¼y£¼300}\\{x¡¢yÎªÆæÊý}\end{array}\right.$£¬
¹ÊÑ¡£ºB£®

µãÆÀ ´ËÌ⿼²é¶þÔªÒ»´Î·½³ÌµÄÓ¦Ó㬹ؼüÊǸù¾ÝÒ»ÉÙÈý¶àËÄÏ·֣¬²»ÒªË«ÊýÒªµ¥ÊýÁгö²»µÈʽ×飮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖª¡÷ABCÖУ¬AB=AC£¬BD¡¢CEÊǸߣ¬BDÓëCEÏཻÓÚµãO
£¨1£©ÇóÖ¤£ºOB=OC£»
£¨2£©Èô¡ÏABC=50¡ã£¬Çó¡ÏBOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Çó·½³ÌÖеÄxµÄÖµ
27x3+125=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬ÒÑÖª¡ÏB=60¡ã£¬¡ÏC=2¡ÏB£¬ÓÉÕâЩÌõ¼þÄãÄÜÅÐ¶ÏÆ½ÐеÄÁ½ÌõÖ±ÏßÊÇAB¡ÎCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚÊýѧ»î¶¯¿ÎÉÏ£¬ÀÏʦ˵ÓÐÈ˸ù¾ÝÈçϵÄÖ¤Ã÷¹ý³Ì£¬µÃµ½¡°1=2¡±µÄ½áÂÛ£®
Éèa¡¢bΪÕýÊý£¬ÇÒa=b£®
¡ßa=b£¬
¡àab=b2£®                                          ¢Ù
¡àab-a2=b2-a2£®                               ¢Ú
¡àa£¨b-a£©=£¨b+a£©£¨b-a£©£®  ¢Û
¡àa=b+a£®                                       ¢Ü
¡àa=2a£®                                          ¢Ý
¡à1=2£®                                           ¢Þ
´ó¼Ò¾­¹ýÈÏÕæÌÖÂÛ£¬·¢ÏÖÉÏÊöÖ¤Ã÷¹ý³ÌÖдÓijһ²½¿ªÊ¼³öÏÖ´íÎó£¬ÕâÒ»²½ÊǢܣ¨ÌîÈë±àºÅ£©£¬Ôì³É´íÎóµÄÔ­ÒòÊÇÁ½±ß¶¼³ýÒÔ0ÎÞÒâÒ壮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ò»×é°´¹æÂÉÅÅÁеÄʽ×Ó£º$\frac{2}{a}$£¬$\frac{5}{{a}^{2}}$£¬$\frac{10}{{a}^{3}}$£¬$\frac{17}{{a}^{4}}$£¬$\frac{26}{{a}^{5}}$¡­µÚn¸öʽ×ÓÊÇ£¨¡¡¡¡£©£¨Óú¬nµÄʽ×Ó±íʾ£¬nΪÕýÕûÊý£©
A£®$\frac{£¨n-1£©^{2}}{{a}^{n}}$B£®$\frac{{n}^{2}-1}{{a}^{n}}$C£®$\frac{£¨n+1£©^{2}}{{a}^{n}}$D£®$\frac{{n}^{2}+1}{{a}^{n}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ÆË㣺
£¨1£©£¨$\sqrt{24}$-$\sqrt{2}$£©-£¨$\sqrt{8}$+$\sqrt{6}$£©
£¨2£©£¨-3£©0-$\sqrt{8}$+|1-2$\sqrt{2}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺
£¨1£©£¨$\frac{1}{10}$£©-2-£¨-3£©0+£¨-0.2£©2009¡Á£¨-5£©2009    
£¨2£©2b2+£¨a+b£©£¨a-b£©-£¨a-b£©2
£¨3£©£¨-2x2y+6x3y4-8xy£©¡Â£¨-2xy£©    
£¨4£©£¨2x+3y+5£©£¨2x+3y-5£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÈôÒ»¸ö×ÔÈ»ÊýµÄËãÊõƽ·½¸ùÊÇa£¬ÔòÓëÕâ¸ö×ÔÈ»ÊýÏàÁÚµÄÏÂÒ»¸ö×ÔÈ»ÊýÊÇ£¨¡¡¡¡£©
A£®a2+1B£®$\sqrt{{a}^{2}+1}$C£®a+1D£®$\sqrt{a+1}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸