已知函数y=y1+y2,其中y1与x+1成反比例,y2与x2成正比例,且当x=1时,y=2; x=0时,y=2.
求:(1)y关于x的函数解析式;(2)当x=2时,y的值.
解:∵y
1与x+1成反比例,
∴y
1=

(k
1≠0);
∵y
2与x
2成正比例,
∴y
2=k
2x
2(k
2≠0);
∴y=y
1+y
2=

+k
2x
2,
∵当x=1时,y=2; x=0时,y=2,
∴

,
解得,

,
∴y=

+x
2,即y关于x的函数解析式是:y=

+x
2;
(2)由(1)知,y=

+x
2,
∴根据题意知,y=

+2
2=

.
分析:(1)根据题意设出函数关系式,把“x=0时,y=2;当x=1时,y=2”代入y与x间的函数关系式便可求出未知数的值,从而求出其解析式;
(2)将x的值代入(1)中的函数解析式即可求得相应的y值.
点评:此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1和反比例函数解析式的一般式y=

(k≠0)中,特别注意不要忽略k≠0这个条件.