精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于圆,D是
BC
的中点,AD交BC于E,求证:AB•AC=AE•AD.
分析:先根据D是
BC
的中点得出
BD
=
CD
,故可得出∠BAD=∠CAD,再由∠D=∠C可知△ABD∽△AC,由相似三角形的对应边成比例即可得出结论.
解答:证明:∵D是
BC
的中点,
BD
=
CD

∴∠BAD=∠CAD,
∵∠D=∠C,
∴△ABD∽△AEC,
AB
AE
=
AD
AC

∴AB•AC=AE•AD.
点评:本题考查的是圆周角定理,圆心角、弧、弦的关系及相似三角形的判定与性质,熟知圆周角定理是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案