精英家教网 > 初中数学 > 题目详情

如图,反比例函数y=数学公式的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为3.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.
(1)求反比例函数y=数学公式与直线y=x+m的函数关系式;
(2)求梯形ABCD的面积.

解:(1)∵点P(6,2)在反比例函数y=的图象上,
∴k=6×2=12,
∴反比例函数的解析式为y=
∵点P(6,2)在直线y=x+m上,
∴6+m=2,解得m=-4,
∴直线的解析式为y=x-4;

(2)∵点A、B在直线y=x-4上,
∴当x=2时,y=2-4=-2,当x=3时,y=3-4=-1,
∴A点坐标为(2,-2),点B的坐标为(3,-1),
又∵AD、BC平行于y轴,
∴点D的横坐标为2,点C的横坐标为3,
而点D、C为反比例函数y=的图象上,
∴当x=2,则y=6,当x=3,则y=4,
∴D点坐标为(2,6),点C的坐标为(3,4),
∴DA=6-(-2)=8,CB=4-(-1)=5,
∴梯形ABCD的面积=×(8+5)×1=
分析:(1)由于反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),则把A(6,2)分别代入两个解析式可求出k与b的值,从而确定反比例函数y=与直线y=x+m的函数关系式;
(2)先把点A的横坐标为2,点B的横坐标为3代入y=x-4中得到对应的纵坐标,则可确定A点坐标为(2,-2),点B的坐标为(3,-1),由AD、BC平行于y轴可得点D的横坐标为2,点C的横坐标为3,然后把它们分别代入y=中,可确定D点坐标为(2,6),点C的坐标为(3,4),然后根据梯形的面积公式计算即可.
点评:本题考查了反比例函数综合题:点在图象上,则点的横纵坐标满足图象的解析式;平行于y轴的直线上所有点的横坐标相同;运用梯形的面积公式进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
与一次函数y=ax的图象交于两点A、B,若A点坐标为(2,1),则B点坐标为
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求△AOC的面积;
(3)观察函数图象,写出当x取何值时,一次函数的值比反比例函数的值小?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
k
x
(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<
k
x
时,则x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2
x
在第一象限的图象上有一点P,PC⊥x轴于点C,交反比例函数y=
1
x
图象于点A,PD⊥y轴于点D,交y=
1
x
图象于点B,则四边形PAOB的面积为
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
的图象经过A、B两点,点A、B的横坐标分别为2、4,过A作AC⊥x轴,垂足为C,且△AOC的面积等于4.
(1)求k的值;
(2)求直线AB的函数值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积;
(4)在x轴的正半轴上是否存在一点P,使得△POA为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案