精英家教网 > 初中数学 > 题目详情
14、已知x2+xy=3,xy+y2=1,则x+y的值是
±2
分析:由于(x+y)2=x2+xy+xy+y2,然后利用已知等式即可求解.
解答:解:∵(x+y)2=x2+xy+xy+y2
而x2+xy=3,xy+y2=1,
∴(x+y)2=3+1=4,
∴x+y=±2.
故答案为:±2.
点评:此题主要考查了因式分解的应用,解题的关键是利用了完全平方公式解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知x2-xy=21,xy-y2=-12,则式子x2-y2=
9
,x2-2xy+y2=
33

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知x2-xy=21,xy-y2=-12,分别求式子x2-y2与x2-2xy+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知 x2+xy=12,xy+y2=15,求代数式(x+y)2-2y(x+y)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x2-xy=60,xy-y2=40,求代数式x2-y2和x2-2xy+y2的值.

查看答案和解析>>

同步练习册答案