精英家教网 > 初中数学 > 题目详情
如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=GE,F、G分别是BC、CE的中点,FMAC,GNDC.设图中三个平行四边形的面积依次是S1,S2,S3,若S1+S3=20,则S2等于(  )
A.7B.8C.9D.10
精英家教网

精英家教网
如图;(a、b分别表示△OFC、△GNE的面积)
∵F、G分别是BC、CE的中点,
∴△BMF、△OFC以及△CPG、△GNE都是全等的等边三角形;
∴S△CPG=b;
设M到AC的距离为h,则S1=OA?h,a=
1
2
OC?h;
∵OA=MF=OC,∴S1=2a,同理可得S3=2b;
易知△OFC△NGE,则a:b=FC2:GE2=1:4,即b=4a;
∵a+b=
1
2
(S1+S3)=10,故a=2,b=8;
∴S△PCG=b=8;
梯形COHG中,PH=OC=FM=
1
2
CG=
1
2
PG,同上可证得S2=S△CPG
所以S2=b=8,故选B.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=
12
CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=GE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S2,S3,若S1+S3=20,则S2等于(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:
精英家教网
(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河南模拟)如图,在直线l上摆放着三个等边三角形:△ABC、△HFG、△DCE,已知BC=
12
CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积一依次是S1,S2,S3若S1+S3=10,则S2=
4
4

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(48):2.7 最大面积是多少(解析版) 题型:解答题

如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:

(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.

查看答案和解析>>

同步练习册答案