精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,点E在边AD上,连接BE,∠ABE=30°,BE=DE,连接BD.点M为线段DE上的任意一点,过点M作MN∥BD,与BE相交于点N.
(1)如果数学公式,求边AD的长;
(2)如图1,在(1)的条件下,如果点M为线段DE的中点,连接CN.过点M作MF⊥CN,垂足为点F,求线段MF的长;
(3)试判断BE、MN、MD这三条线段的长度之间有怎样的数量关系?请证明你的结论.

解:(1)由矩形ABCD,得AB=CD,∠A=∠ADC=90°.
在Rt△ABE中,∵∠ABE=30°,
,BE=2AE=4.(2分)
又∵BE=DE,∴DE=4.
于是,由AD=AE+DE,得AD=6.(2分)


(2)连接CM.
在Rt△ABD中,.(1分)
∴BD=2AB,即得∠ADB=30°.
∵MN∥BD,∴∠AMN=∠ADB=30°.(1分)
又∵MN∥BD,点M为线段DE的中点,
∴DM=EM=2,
.(1分)
在Rt△CDM中,
∴∠CMD=60°,即得CM=4,∠CMN=90°.(1分)
由勾股定理,得
于是,由MF⊥CN,∠CMN=90°,
.(1分)

(3).(1分)
证明如下:过点E作EF⊥BD,垂足为点F.
∵BE=DE,EF⊥BD,∴BD=2DF.(1分)
在Rt△DEF中,由∠EDB=30°,
,即得.(1分)
∵MN∥BD,∴,即得,BN=DM.
.(1分)
于是,由BE=BN+EN,得
分析:(1)根据矩形的四个内角都是直角、对边相等的性质求得AB=CD,∠A=∠ADC=90°.然后在Rt△ABE中利用特殊角的三角函数值求得AB、AE、BE及DE的值;所以由AD=AE+DE求得AD的值即可;
(2)连接CM.在Rt△ABD中,利用勾股定理求得BD=4,然后利用直角三角形的边角关系求得∠ADB=30°,由平行线MN∥BD的内错角相等知,∠AMN=∠ADB=30°;再由平行线MN∥BD分线段成比例求得MN的长度;最后在Rt△CDM中利用边角关系、勾股定理求解;
(3)过点E作EF⊥BD,垂足为点F(图1).由已知条件BE=DE,EF⊥BD,求得BD=2DF;然后在Rt△DEF中,利用边角关系求得BD与BE的数量关系;再有平行线MN∥BD分线段成比例解得EN与MN的关系.
点评:本题结合矩形的性质考查了平行线分线段成比例、勾股定理的应用、直角三角形的解法.本题是利用图形间的角、边关系求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案