精英家教网 > 初中数学 > 题目详情
已知:如图,在以点O为圆心的两个同心圆中,大圆的半径OA与小圆相交于点B,AC与小圆相切于点C,OC的延长线与大圆相交于点D,AC与BD相交于点E.
求证:(1)BD是小圆的切线;
(2)CE:AE=OC:OD.
证明:(1)∵AC与小圆O相切于点C,
∴∠ACO=90°;
∵OD=OA,OB=OC,∠O=∠O,
∴△DOB≌△AOC,
∴∠DBO=∠ACO=90°,
∵OB是小圆的半径,
∴BD是小圆的切线;

(2)∵△AOC≌△DOB,
∴∠A=∠D;
又∵∠EBA=∠DBO=90°,
∴△ABE△DBO,∴BE:AE=OB:OD;
∵EB、EC与小圆分别相切于B、C,
∴CE=BE;
又∵OC=OB,
∴CE:AE=OC:OD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,AB是半圆的直径,CD是这个半圆的切线,C是切点,且∠ACD=30°,下列四个结论中不正确的是(  )
A.AB=2ACB.AB2=AC2+BC2
C.BC=
3
AC
D.AB=
2
BC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:正方形ABCD的边长为4,⊙O交正方形ABCD的对角线AC所在直线于点T,连接TO交⊙O于点S.

(1)如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连接DT、DS.
①试判断线段DT、DS的数量关系和位置关系;
②求AS+AT的值;
(2)如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连接DT、DS.求AS-AT的值;
(3)如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连接ET、ES.根据(1)、(2)计算,通过观察、分析,对线段
AS、AT的数量关系提出问题并解答.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD,AB=2,AD=4,EG=2.
求证:∠A=60°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,C为AB延长线上一点,CD与⊙O相切,切点为E,AD⊥CD于点D,交⊙O于点F,若⊙O的半径为2,设BC=x,DF=y,则y关于x的函数解析式为y=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,AC=3
3
,DC=3,O是边AB上一动点(O与点A和B不重合),以OA为半径的⊙O与AB相交于点E.
(1)若⊙O经过点D,求证:BC与⊙O相切;
(2)试求在(1)中⊙O的半径OA的长度;
(3)请分别写出⊙O与BC所在直线相交和相离时OA的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E作EG⊥BC于G,延长GE交AD于H.
(1)求证:AH=HD;
(2)若cos∠C=
4
5
,DF=9,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.
(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);
(II)如图②,连接CD、CE,若四边形ODCE为菱形,求
OD
OA
的值.

查看答案和解析>>

同步练习册答案