精英家教网 > 初中数学 > 题目详情

解方程:(1)x2-24=2x
(2)x2+x-1=0

解:(1)移项,得x2-24-2x=0,
因式分解,得(x-6)(x+4)=0,
解得x=6或x=-4;

(2)a=1,b=1,c=-1,
b2-4ac=1-4×1×(-1)=5,
x==
∴x=或x=
分析:(1)先移项,根据所给方程的系数特点,可以利用二次三项式的因式分解法将方程的左边因式分解,因此用因式分解法解答.
(2)根据所给方程的系数特点,应用公式法解答.
点评:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法时,即可考虑用求根公式法,此法适用于任何一元二次方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

解方程:
(1)x2-2x=0
(2)x(2x-7)=-3
(3)x2-2x-3=0(用配方法)
(4)(x-2)2=(2x+3)2

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
(1)x2-2
5
x+2=0;                   
(2)3x2-7x+4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)解方程:
1
x-2
=
1-x
2-x
-3

(2)解方程组:
x+3y=-1
3x-2y=8

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:(1)x2+x-1=0   (2)(x+1)(x-1)=2
2
x

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
(1)x2-6x+9=(5-2x)2
(2)2y2+8y-1=0(用配方法).

查看答案和解析>>

同步练习册答案