【题目】为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
【答案】(1)y=﹣20x+1600;
(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)超市每天至少销售粽子440盒.
【解析】
试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;
(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.
解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;
(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,
∵x≥45,a=﹣20<0,
∴当x=60时,P最大值=8000元,
即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)由题意,得﹣20(x﹣60)2+8000=6000,
解得x1=50,x2=70.
∵抛物线P=﹣20(x﹣60)2+8000的开口向下,
∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.
又∵x≤58,
∴50≤x≤58.
∵在y=﹣20x+1600中,k=﹣20<0,
∴y随x的增大而减小,
∴当x=58时,y最小值=﹣20×58+1600=440,
即超市每天至少销售粽子440盒.
科目:初中数学 来源: 题型:
【题目】已知矩形ABCD中,AB=3cm,AD=4cm,以A为圆心,4cm为半径作⊙A,则( )
A.B在⊙A内,C在⊙A外
B.D在⊙A内,C在⊙A外
C.B在⊙A内,D在⊙A外
D.B在⊙A上,C在⊙A外
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若⊙O的直径为10cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是( )
A.点A在圆外 B.点A在圆上 C.点A在圆内 D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=(x﹣1)2+1向下平移1个单位,所得新抛物线的解析式为( )
A.y=(x﹣1)2+2 B.y=(x﹣1)2 C.y=(x﹣2)2+1 D.y=x2+1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com