精英家教网 > 初中数学 > 题目详情
9.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E,若∠A=42°,则∠D=(  )
A.42°B.58°C.52°D.48°

分析 首先根据平行线的性质求得∠ECD的度数,然后在直角△ECD中,利用三角形内角和定理求解.

解答 解:∵AB∥CD,
∴∠ECD=∠A=42°,
又∵DE⊥AE,
∴直角△ECD中,∠D=90°-∠ECD=90°-42°=48°.
故选:D.

点评 本题考查了平行线的性质以及三角形内角和定理,正确运用定理是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;
(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平面直角坐标系中,抛物线y=x2-4x与x轴正半轴交于点A,其顶点为M,将这条抛物线绕点O旋转180°后得到的抛物线与x轴负半轴交于点B,其顶点记为N,连结AM、MB、BN、NA,则四边形AMBN的面积为32.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:如图,选段AB=4,以AB为直径作半圆O,点C为弧AB的中点,点P为直径AB上一点,联结PC,过点C作CD∥AB,且CD=PC,过点D作DE∥PC,交射线PB于点E,PD与CE相交于点Q.
(1)若点P与点A重合,求BE的长;
(2)设PC=x,$\frac{PD}{CE}$=y,当点P在线段AO上时,求y与x的函数关系式及定义域;
(3)当点Q在半圆O上时,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1)(-1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2017的坐标为(2,0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.“如果二次函数y=ax2+bx+c的图象与一次函数y=kx+b有两个公共点,那么一元二次方程ax2+bx+c=kx+b有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若方程|x2-4x+1|=a有四个解,则a的取值范围是0<a<3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,线段OA=4,点C是OA的中点,以线段CA为对角线作正方形ABCD.将线段OA绕点O向逆时针方向旋转60°,得到线段OA′和正方形A′B′C′D′.在旋转过程中,正方形ABCD扫过的面积是2π+2.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在下列-$\sqrt{2}$,-1,0,1四个数中,最小的是(  )
A.-$\sqrt{2}$B.-1C.0D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在我国南海某海域探明可燃冰储量约有194亿立方米,数字194亿用科学记数法表示正确的是(  )
A.1.94×1010B.0.194×1011C.19.4×109D.1.94×109

查看答案和解析>>

同步练习册答案