如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
(1)DE=BD;(2)4.8
【解析】
试题分析:(1)连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.
(2)由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.
(1)如图,连接AD,则AD⊥BC,
在等腰三角形ABC中,AD⊥BC,
∴∠CAD=∠BAD(等腰三角形三线合一),
∴弧ED=弧BD,
∴DE=BD;
(2)∵AB=5,BD=BC=3,
∴AD=4,
∵AB=AC=5,
∴AC•BE=CB•AD,
∴BE=4.8.
考点:本题主要考查了等腰三角形的性质,圆周角定理
点评:用等腰三角形三线合一的特点得出圆周角相等是解答本题的关键.
科目:初中数学 来源: 题型:
(本题6分)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.(1) 试判断DE与BD是否相等,并说明理由;(2) 如果BC=6,AB=5,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012年浙江省衢州华外九年级上学期第二次质量检测数学卷 题型:解答题
(本题6分)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.(1) 试判断DE与BD是否相等,并说明理由;(2) 如果BC=6,AB=5,求BE的长.
查看答案和解析>>
科目:初中数学 来源:2011-2012年浙江省衢州华外九年级上学期第二次质量检测数学卷 题型:解答题
(本题6分)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.(1) 试判断DE与BD是否相等,并说明理由;(2) 如果BC=6,AB=5,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com