精英家教网 > 初中数学 > 题目详情

已知反比例函数数学公式图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函数数学公式的图象上另一点C(n,-数学公式).
①求直线y=ax+b的关系式;
②据图象写出使反比例函数数学公式的值大于一次函数 y=ax+b的值的x的取值范围.

解:(1)∵A(-2,m),即AO=2,Rt△AOB面积为3,
∴AB=3,
∴A(-2,3),m=3;
将A坐标代入反比例解析式得:k=-6;
(2)①将C(n,-)代入反比例解析式得:n=4,即C(4,-),
将A与C坐标代入一次函数y=ax+b中,得:
解得:
∴一次函数解析式为y=-x+
②由A、C的横坐标分别为-2和4,
利用图象得:反比例函数的值大于一次函数的值的x的取值范围为-2<x<0或x>4.
分析:(1)根据A坐标求出OB的长,由直角三角形AOB的面积求出AB的长,确定出A坐标得到m的值,代入反比例解析式求出k的值即可;
(2)①将C坐标代入反比例解析式求出n的值,确定出C坐标,将A与C坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;
②根据两函数交点A与C的横坐标,利用函数图象即可求出所求x的范围.
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,一次函数与坐标轴的交点,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知反比例函数数学公式图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3,若直线y=ax+b经过点A,并且经过反比例函数数学公式的图象上另一点C(n,-数学公式),
(1)反比例函数的解析式为______,m=______,n=______;
(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:第5章《反比例函数》常考题集(13):5.2 反比例函数的图象与性质(解析版) 题型:解答题

已知反比例函数图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函的图象上另一点C(n,-
①求直线y=ax+b解析式;
②设直线y=ax+b与x轴交于M,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》常考题集(44):20.7 反比例函数的图象、性质和应用(解析版) 题型:解答题

已知反比例函数图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为3,若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,-),
(1)求反比例函数的解析式和直线y=ax+b解析式;
﹙2﹚求△AOC的面积;
(3)在坐标轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:第1章《反比例函数》常考题集(15):1.3 反比例函数的应用(解析版) 题型:解答题

已知反比例函数图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函的图象上另一点C(n,-
①求直线y=ax+b解析式;
②设直线y=ax+b与x轴交于M,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》常考题集(40):23.6 反比例函数(解析版) 题型:解答题

已知反比例函数图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函的图象上另一点C(n,-
①求直线y=ax+b解析式;
②设直线y=ax+b与x轴交于M,求△AOC的面积.

查看答案和解析>>

同步练习册答案