已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?
(3)求四边形OCDB的面积.
(1)A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4)图形见解析;
(2)抛物线y=x2-2x-3可由y=x2先向右平移1个单位,再向下平移4个单位而得到;
(3)四边形OCDB的面积为.
【解析】
试题分析:(1)先把此二次函数化为y=(x+1)(x﹣3)的形式,即可求出A、B两点的坐标,由二次函数的解析式可知c=﹣3,故可知C点坐标,由二次函数的顶点式即可求出其顶点坐标;
(2)根据四边形OCDB的面积=S矩形OEFB﹣S△BDF﹣S△CED即可解答.
试题解析:(1)∵二次函数y=x2﹣2x﹣3可化为y=(x+1)(x﹣3),A在B的左侧,
∴A(﹣1,0),B(3,0),
∵c=﹣3,
∴C(0,﹣3),
∵x===1,y==﹣4,
∴D(1,﹣4),故此函数的大致图象为:
(2)抛物线y=x2-2x-3可由y=x2先向右平移1个单位,再向下平移4个单位而得到;
(3)连接CD、BD,
则四边形OCDB的面积=S矩形OEFB﹣S△BDF﹣S△CED
=OB•|OE|﹣DF•|BF|﹣DE•CE
=3×4﹣×2×4﹣×1×1
=12﹣4﹣
=.
.
考点:二次函数图象上点的坐标特征.
科目:初中数学 来源: 题型:
(本题满分10分)已知二次函数y=x2+bx-3的图像经过点P(-2,5).
(1)求b的值,并写出当0<x≤3时y的取值范围;
(2)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图像上.
①试比较y1和y2的大小;
②当m取不小于5的任意实数时,请你探索:y1、y2、y3能否作为一个三角形
三边的长,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011年蒙城六中九年级(上)第一次教学质量检测数学卷 题型:解答题
已知二次函数y=x2-2x-3.求:
(1)抛物线与x轴和y轴相交的交点坐标;
(2)画出此抛物线图象;
(3)利用图象回答下列问题:
①方程x2-2x-3=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
查看答案和解析>>
科目:初中数学 来源:2011届江苏省太仓市九年级上学期期中考试数学卷 题型:选择题
已知二次函数y=x2-4x+3的图象是由y=x2+2x-1的图象先向上平移一个单位,再向
A.左移3个单位 B.右移3个单位 C.左移6个单位 D.右移6个单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com