精英家教网 > 初中数学 > 题目详情

在如图给出的过直线外一点作已知直线l1的平行线l2的方法,其依据是


  1. A.
    同位角相等,两直线平行;
  2. B.
    内错角相等,两直线平行;
  3. C.
    筒旁内角互补,两直线平行;
  4. D.
    两直线平行,同位角相等.
A
试题分析:判定两条直线是平行线的方法有:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.
由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行,
故选A.
考点:本题考查的是平行线的判定
点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•烟台)(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(山东烟台卷)数学(带解析) 题型:解答题

(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C
作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在
图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>

科目:初中数学 来源:2012年苏教版初中数学七年级下 7.1探索直线平行的条件练习卷(解析版) 题型:选择题

在如图给出的过直线外一点作已知直线l1的平行线l2的方法,其依据是(   )

A.同位角相等,两直线平行;     B.内错角相等,两直线平行;

C.筒旁内角互补,两直线平行;   D.两直线平行,同位角相等.

 

查看答案和解析>>

科目:初中数学 来源:山东省中考真题 题型:解答题

(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N,试探究线段D1M与线段D2N的数量关系,并加以证明。
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1,作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N,D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由。
②如图3,若将①中的”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>

同步练习册答案