精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC内接于⊙O.将⊙O沿直径AC对折,B点落在圆上D点处.连接BD交AC于点E,过C点作BD的平行线交AD的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=
35
,DF=3,求⊙O的半径长.
分析:(1)欲证CF是⊙O的切线,只需证明⊥CF即可;
(2)由圆周角定理、平行线的性质以及等量代换推知∠BAC=∠DCF;然后根据三角函数的定义、轴对称图形的性质求得DC=BC=4;最后在直角三角形ABC中利用正弦三角函数的定义求得该圆的直径AC的长度.
解答:(1)证明:∵B、D关于AC对称,∴AC⊥BD,
又∵CF∥BD,
∴AC⊥CF,
∵点C在⊙O上,
∴CF是⊙O的切线;

(2)解:∵AC是⊙O的直径,
∴∠ADC=90°(直径所对的圆周角是直角),
∴∠CDF=90°;
又∵CF∥BD(已知),
∴∠BDC=∠DCF(两直线平行,内错角相等);
∵∠BAC=∠BDC(同弧所对的圆周角相等),
∴∠BAC=∠DCF(等量代换),
∴sin∠BAC=sin∠DCF=
DF
CF
=
3
5

∴CF=5;
∴CD=4;
∵B、D关于AC对称,
∴BC=CD=4,
∴sin∠BAC=
BC
AC
=
3
5

∴AC=
20
3

∴⊙O的半径长=
1
2
AC=
10
3
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC内有三个内接正方形,DF=18,GK=12,则PQ=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,Rt△ABC内接于⊙O,∠A=30°,延长斜边AB到D,使BD等于⊙O半径,求证:DC是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC内接于⊙O,∠ACB的平分线分别交AB、⊙O于点D、E.
求证:CD•CE=AC•BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于(  )

查看答案和解析>>

同步练习册答案