精英家教网 > 初中数学 > 题目详情
如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E=
35
35
度.
分析:先根据平行线的性质求出∠DFE的度数,再由三角形外角的性质即可得出结论.
解答:解:∵AB∥CD,∠A=60°,
∴∠DFE=∠A=60°,
∵∠DFE是△CEF的外角,
∴∠E=∠DFE-∠C=60°-25°=35°.
故答案为:35.
点评:本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知AB∥CD,∠A=38°,则∠1=
142°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠1=50°25′,则∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知 AB∥CD,∠A=53°,则∠1的度数是
127°
127°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,那么下列结论中,正确的是(  )

查看答案和解析>>

同步练习册答案