
解:(1)当k=1时,BC=AC,CD=CE.
在△ACE与△BCD中,
∠BCD+∠BCE=∠ACE+∠BCE=90°,
∴∠BCD=∠ACE,
BC=AC,CD=CE,
∴△ACE≌△BCD(SAS);
∴AE=BD(对应边相等),
∠CAE=∠CBD(对应角相等);
延长AE交BD于点G.
∵∠ACB=90°,
∴∠ABC+∠BAC=90°;
在△ABG中,
∠ABG+∠BAG=∠ABC+∠BAG+∠CBD=∠ABC+∠BAC=90°,
∴∠AGB=90°,
∴AG⊥BD,即AE⊥BD;
(2)当k≠1时,BC=k•AC,CD=k•CE.
在△ACE与△BCD中,
∠BCD+∠BCE=∠ACE+∠BCE=90°,
∴∠BCD=∠ACE,

=

=k,
∴△ACE∽△BCD(SAS);
∴∠CAE=∠CBD(对应角相等);
延长AE交BD于点G.
∵∠ACB=90°,
∴∠ABC+∠BAC=90°;
在△ABG中,
∠ABG+∠BAG=∠ABC+∠BAG+∠CBD=∠ABC+∠BAC=90°,
∴∠AGB=90°,
∴AG⊥BD,即AE⊥BD;
(3)CN⊥CM.
证明:∵△ACE∽△BCD(SAS),
∴∠CDB=∠CEA(相似三角形的对应角相等),
∴

=

(相似三角形的对应边成比例);
又∵BD=m•MD,AE=m•NE,
∴

=

,
∴

=

;
在△CNE和△CMD中,

=

,∠CDB=∠CEA,
∴△CNE∽△CMD(SAS),
∴∠MCD=∠NCE;
∴∠BCM=∠ACN,
∴∠NCM=∠BCN+∠ACE=∠ACB=90°,即∠NCM=90°,
∴CN⊥CM.
分析:(1)取k=1时,BC=AC,CD=CE.由∠BCD+∠BCE=∠ACE+∠BCE=90°,得知∠BCD=∠ACE,从而证明△ACE≌△BCD(SAS);然后根据全等三角形的对应变相等,对应角相等求得AE=BD,∠CAE=∠CBD;最后延长AE交BD于点G构建三角形ABG,根据三角形的内角和求得∠AGB=90°,即AE⊥BD;
(2)当k≠1时,BC=k•AC,CD=k•CE.求得

=

=k,由∠BCD+∠BCE=∠ACE+∠BCE=90°,得知∠BCD=∠ACE,从而证明△ACE∽△BCD(SAS);然后根据相似三角形的对应变相等,对应角相等求得AE=BD,∠CAE=∠CBD;最后延长AE交BD于点G构建三角形ABG,根据三角形的内角和求得∠AGB=90°,即AE⊥BD;
(3)在(2)的基础上,求得△ACE∽△BCD,又BD=m•MD,AE=m•NE,所以

=

,∠CDB=∠CEA,从而证明△CNE∽△CMD(SAS),然后根据相似三角形的对应角相等求得∠BCM=∠ACN,所以∠NCM=∠BCN+∠ACE=∠ACB=90°,即∠NCM=90°.
点评:本题考查了全等三角形的判定与性质、相似三角形的判定与性质.解答此题时,关键是根据全等三角形或相似三角形的对应角相等求得∠AGB=90°,∠NCM=90°.从而证明AE⊥BD,CN⊥CM.