精英家教网 > 初中数学 > 题目详情
已知x2-kx+
14
是一个完全平方式,那么k的值为
 
分析:符合a2+2ab+b2形式的式子叫完全平方式,要明确,常数项是一次项系数一半的平方.
解答:解:∵x2-kx+
1
4
是一个完全平方式,
∴(-
k
2
2=
1
4

∴k=±1.
故答案为±1.
点评:本题考查了完全平方式,解题的关键是知道常数项是一次项系数一半的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次方程(k-1)x2-
k
x+
1
4
=0有实数根,则k的取值范围是(  )
A、k为任意实数B、k≠1
C、k≥0D、k≥0且k≠1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知多项式x2+kx+
1
4
是一个完全平方式,则k的值为(  )
A、±1
B、-1
C、1
D、±
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
∵(x+3)(x-2)=x2+x-6,∴(x2+x-6)÷(x-2)=x+3;这说明x2+x-6能被x-2整除,同时也说明多项式x2+x-6有一个因式为x-2;另外,当x=2时,多项式x2+x-6的值为零.
回答下列问题:
(1)根据上面的材料猜想:多项式的值为0、多项式有因式x-2、多项式能被x-2整除,这之间存在着一种什么样的联系?
(2)探求规律:更一般地,如果一个关于字母2的多项式M,当x=k时,M的值为0,那么M与代数式x-k之间有何种关系?
(3)应用:利用上面的结果求解,已知x-2能整除x2+kx-14,求k.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下列材料:
∵(x+3)(x-2)=x2+x-6,∴(x2+x-6)÷(x-2)=x+3;这说明x2+x-6能被x-2整除,同时也说明多项式x2+x-6有一个因式为x-2;另外,当x=2时,多项式x2+x-6的值为零.
回答下列问题:
(1)根据上面的材料猜想:多项式的值为0、多项式有因式x-2、多项式能被x-2整除,这之间存在着一种什么样的联系?
(2)探求规律:更一般地,如果一个关于字母2的多项式M,当x=k时,M的值为0,那么M与代数式x-k之间有何种关系?
(3)应用:利用上面的结果求解,已知x-2能整除x2+kx-14,求k.

查看答案和解析>>

同步练习册答案