精英家教网 > 初中数学 > 题目详情

已知y关于x的二次函数y=-2x2+(k-2)x+6,当x≥1时,y随着x的增大而减小,当x≤1时,y随着x的增大而增大.
(1)求k的值;
(2)求出这个函数的最大值或最小值,并说出取得最大值或最小值时相应的自变量的值;
(3)写出当y>0时相应的x的取值范围.

解:(1)依题意可知,抛物线对称轴为x=1,
,解得k=6;
(2)当k=6时,y=-2x2+4x+6=-2(x-1)2+8,
故当x=1时,y的最大值是8;
(3)当y=0时,-2x2+4x+6=0,解得x=-1或3,
故当-1<x<3时,y>0.
分析:(1)根据二次函数的增减性可知,对称轴x=1,再根据对称轴公式求k的值;
(2)将抛物线解析式的一般式转化为顶点式,可确定抛物线的顶点坐标,从而得出最大(小)值;
(3)令y=0,求出x的值,再求当y>0时相应的x的取值范围.
点评:本题考查了抛物线的开口方向、对称轴、顶点坐标与抛物线解析式的关系,抛物线的顶点式:y=a(x-h)2+k,顶点坐标为(h,k),对称轴x=h.同时考查了用抛物线与x轴的交点坐标,判断函数值的符号的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的二次函数y=ax2+2ax+7a-3在-2≤x≤5上的函数值始终是正的,则a的取值范围(  )
A、a>
1
2
B、a<0或a>
1
14
C、a>
1
14
D、
1
14
<a<
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知关于x的二次函数y=x2+(2k-1)x+k2-1.
(1)若关于x的一元二次方程x2+(2k-1)x+k2-1=0的两根的平方和等于9,求k的值,并在直角坐标系(如图)中画出函数y=x2+(2k-1)x+k2-1的大致图象;
(2)在(1)的条件下,设这个二次函数的图象与x轴从左至右交于A、B两点.问函数对称轴右边的图象上,是否存在点M,使锐角△AMB的面积等于3.若存在,请求出点M的坐标;若不存在,请说明理由;
(3)在(1)、(2)条件下,若P点是二次函图象上的点,且∠PAM=90°,求△APM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的二次函数y=x2+(2k-1)x+k2-1.
(1)若关于x的一元二次方程x2+(2k-1)x+k2-1=0的两根的平方和等于9,求k的值,并在直角坐标系(如图)中画出函数y=x2+(2k-1)x+k2-1的大致图象;
(2)在(1)的条件下,设这个二次函数的图象与x轴从左至右交于A、B两点.问函数对称轴右边的图象上,是否存在点M,使锐角△AMB的面积等于3.若存在,请求出点M的坐标;若不存在,请说明理由;
(3)在(1)、(2)条件下,若P点是二次函图象上的点,且∠PAM=90°,求△APM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的二次函数y=ax2+bx+1(a≠0),自变量x的部分取值及对应的函数值y如下表所示:

x-301
y115

求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2011年广东省广州市白云区中考数学一模试卷(解析版) 题型:解答题

已知关于x的二次函数y=x2+(2k-1)x+k2-1.
(1)若关于x的一元二次方程x2+(2k-1)x+k2-1=0的两根的平方和等于9,求k的值,并在直角坐标系(如图)中画出函数y=x2+(2k-1)x+k2-1的大致图象;
(2)在(1)的条件下,设这个二次函数的图象与x轴从左至右交于A、B两点.问函数对称轴右边的图象上,是否存在点M,使锐角△AMB的面积等于3.若存在,请求出点M的坐标;若不存在,请说明理由;
(3)在(1)、(2)条件下,若P点是二次函图象上的点,且∠PAM=90°,求△APM的面积.

查看答案和解析>>

同步练习册答案