精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.

(1)求证:CF是⊙O的切线;

(2)求证:△ACM∽△DCN;

(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.

 

【答案】

(1)见解析(2)见解析(3)

【解析】解:(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO。

在Rt△BCE中,∠2+∠B=900,∠1=∠2,∴∠1+∠BCO=900,即∠FCO=90°

∵OC是⊙O的半径,∴CF是⊙O的切线。

(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=900

∴∠ACB-∠BCO=∠FCO-∠BCO,即∠3=∠1。

∴∠3=∠2。

∵∠4=∠D,∴△ACM∽△DCN。

(3)∵⊙O的半径为4,即AO=CO=BO=4,

在Rt△COE中,cos∠BOC=

∴OE=CO?cos∠BOC=4×=1。∴BE=3,AE=5。

由勾股定理可得:

∵AB是⊙O直径,AB⊥CD,∴由垂径定理得:CD=2CE=

∵点M是CO的中点,∴CM=CO=×4=2

∵△ACM∽△DCN,∴,即

(1)根据切线的判定定理得出∠1+∠BCO=900,即可得出答案;

(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可。

(3)根据已知得出OE的长,从而利用勾股定理得出EC,AC,BC的长,即可得出CD,利用(2)中相似三角形的性质得出NB的长即可。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,则BC=
 
cm,∠ABD=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,直径CD的长度为10cm,AB是弦,且AB⊥CD于M,OM=3cm,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线F精英家教网C与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若OB=BG,求证:四边形OCBD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳区二模)如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD的度数为(  )

查看答案和解析>>

同步练习册答案