精英家教网 > 初中数学 > 题目详情

如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,
规定:线上各点不属于任何部分,点动点P若在某个部分时,连结PA、PB、构成∠PAC,∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式;

(1)证:过PPQ∥AC,则∠APQ=∠PAC.  
AC∥BD,∴PQ∥BD.∴∠BPQ=∠PBD.   
∠APQ+∠BPQ=∠PAC+∠PBD
∠APB=∠PAC+∠PBD
(2)解:当动点P在第②部分时,结论∠APB=∠PAC+∠PBD不成立,
其存在的关系式是∠PAC+∠PBD=360°-∠APB.  

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分
规定:线上各点不属于任何部分,点动点P若在某个部分时,连接PA、PB、构成∠PAC,∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线组成的角是0°角)

(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AC、BD相交于点O,且∠B=∠1,∠2=∠D,试说明AB∥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,
规定:线上各点不属于任何部分,点动点P若在某个部分时,连结PA、PB、构成∠PAC,∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,直线AC、BD相交于点O,且∠B=∠1,∠2=∠D,试说明AB∥CD.

查看答案和解析>>

同步练习册答案