解:(1)

,
解不等式①得:x≤3,
解不等式②得,x>-1,
则不等式的解集为:-1<x≤3,
不等式组的解集在数轴上表示为:

;
(2)在Rt△BCD中,
∵∠DBC=90°,∠BCD=55°,CD=6米,
∴BD=CD×sin∠BCD=6×sin55°≈6×0.82=4.92(米),
∴AD=AB-BD≈6.5-4.92=1.58≈1.6(米).
答:梯子的顶端与墙顶的距离AD约为1.6米.
分析:(1)先求出其中各不等式的解集,再求出这些解集的公共部分,然后利用数轴表示不等式组的解集即可;
(2)在Rt△BCD中,根据∠BCD=55°,CD=6米,解直角三角形求出BD的长度,继而可求得AD=AB-BD的长度.
点评:(1)本题考查了解一元一次不等式组的知识,解答本题的关键是掌握一元一次不等式组的解法:先求出其中各不等式的解集,再求出这些解集的公共部分,然后利用数轴表示不等式组的解集即可;
(2)本题考查了解直角三角形的应用的知识,解答本题的关键是根据已知条件构造直角三角形并利用解直角三角形的知识求解,难度适中.