精英家教网 > 初中数学 > 题目详情
如图,函数y1=k1+b与函数y2=
k2x
的图象(x>0)交于A、B两点,与y轴交于点C,已知点A的坐标为(2,1),点C的坐标为(0,3)
(1)求函数y1、y2的表达式及点B的坐标;
(2)观察图象比较当x>0时,y1和y2的大小.
分析:(1)先根据点A(2,1)在反比例函数的图象上求出k2的值,进而可得出反比例函数的解析式;再由AC两点均在一次函数的图象上求出k1、b的值,进而可得出一次函数的解析式;把一次函数与反比例函数的解析式联立,即可得出B点坐标;
(2)直接根据AB两点的坐标即可得出当x>0时,y1和y2的大小.
解答:解:(1)∵点A(2,1)在反比例函数y2=
k2
x
的图象上,
∴k2=2×1=2,
∴反比例函数y2=
k2
x
的解析式为:y2=
2
x

∵A(2,1),C(0,3)在一次函数y1=k1x+b的图象上,
2k1+b=1
b=3
,解得
k1=-1
b=3

∴一次函数的解析式为:y1=-x+3;
y2=
2
x
y1=-x+3
,解得
x=2
y=1
x=1
y=2

∴B(1,2);

(2)∵A(2,1),B(1,2),
∴当0<x<1或x>2时,反比例函数的图象在一次函数图象的上方,即y2>y1
当1<x<2时,y1>y2
当x=1或x=2时,y1=y2
点评:本题考查的是反比例函数与一次函数的交点问题,涉及到用待定系数法求一次函数及反比例函数的解析式及利用数形结合求不等式的解集,根据题意得出B点坐标是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一次函数y1=k1x+2与反比例函数y2=
k2x
的图象交于点A(4,m)和B(-8精英家教网,-2),与y轴交于点C.
(1)k1=
 
,k2=
 

(2)根据函数图象可知,当y1>y2时,x的取值范围是
 

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=k1x+2与反比例函数y2=
k2
x
的图象交于点A(4,m)和B(-8,-2),与y轴交于点C
(1)m=
4
4
,k1=
1
2
1
2
,k2=
16
16

(2)根据函数图象可知,当y1>y2时,x的取值范围是
-8<x<0或x>4
-8<x<0或x>4

(3)过点A作AD⊥x轴于点D,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,函数y1=k1+b与函数y2=数学公式的图象(x>0)交于A、B两点,与y轴交于点C,已知点A的坐标为(2,1),点C的坐标为(0,3)
(1)求函数y1、y2的表达式及点B的坐标;
(2)观察图象比较当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江省杭州市萧山区高桥初中九年级(上)第二次月考数学试卷(解析版) 题型:解答题

如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A(4,m)和B(-8,-2),与y轴交于点C
(1)m=______,k1=______,k2=______;
(2)根据函数图象可知,当y1>y2时,x的取值范围是______;
(3)过点A作AD⊥x轴于点D,求△ABD的面积.

查看答案和解析>>

同步练习册答案