精英家教网 > 初中数学 > 题目详情
当a取何值时,方程ax+12=2x-5的解是5.
分析:虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.
解答:解:把x=5代入ax+12=2x-5得:5a+12=2×5-5
解得:a=-
7
5

故当a=-
7
5
时,方程ax+12=2x-5的解是5.
点评:本题主要考查的是已知原方程的解,求原方程中未知系数.只需把原方程的解代入原方程,把未知系数当成新方程的未知数求解即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(m+1)x+m2-3=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1、x2是方程的两根,且(x1+x22-(x1+x2)-12=0,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2-2x+m-1=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

当k取何值时,方程2(2x-3)-1=1-2x和8-k=2(x+1)的解相同.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,
(1)当a取何值时,方程两根互为倒数?
(2)如果方程的两个实数根x1、x2满足|x1|=x2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程kx2-(4k+1)x+4=0.
(1)当k取何值时,方程有两个实数根;
(2)若二次函数y=kx2-(4k+1)x+4的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;
(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.

查看答案和解析>>

同步练习册答案