精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
m2x
和一次函数y=-2x-1,其中依次函数的图象经过(a,b),(a+1,b+m)两点.
(1)求反比例函数的解析式;
(2)如图所示,已知点A在第二象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)利用(2)的结果,试判断在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
分析:(1)将(a,b),(a+1,b+m)代入一次函数解析式,可得出m的值,继而得出反比例函数解析式;
(2)联立两解析式,可求出交点坐标,再由A在第二象限,可得点A的坐标;
(3)分两种情况讨论,①OA为腰,②OA为底,分别求出点P的坐标即可.
解答:解:(1)依题意可知:
b=-2a-1
b+m=-2(a+1)-1

解得:m=-2.
∴反比例函数解析式为:y=-
1
x


(2)由
y=-2x-1
y=-
1
x

x1=-1
y1=1
x2=
1
2
y2=-2

∵A点在第二象限,
∴点A的坐标为(-1,1).

(3)如图所示:

OA=
2
,OA与x轴所夹锐角为45°.
①OA为腰时,
若OA=OP,则可得P1
2
,0),P2(-
2
,0);
若OA=AP,得P3(-2,0);
②OA为底时,P4(-1,0).
故这样的点存在,共有四个,分别是P1
2
,0),P2(-
2
,0),P3(-2,0),P4(-1,0).
点评:本题考查了反比例函数的综合,解答本题的关键是掌握整体代入思想、数形结合思想的综合运用,难点在最后一问,注意分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案