【题目】如图,在矩形ABCD中,AB=6,∠BAC=30°,点E在CD边上.
(1)若AE=4,求梯形ABCE的面积;
(2)若点F在AC上,且∠BFA=∠CEA,求的值.
【答案】(1)10.(2).
【解析】
试题分析:(1)在△ABC中,利用∠BAC=30°的正切求出BC的长,再根据勾股定理,利用△ADE的三边求出DE的长度,即可求出EC,代入梯形面积公式即可求解.
(2)求出对角线AC的值,利用△ABF和△CAE相似的性质即可求解.
解:∵矩形ABCD,
∴∠ABC=∠D=90°,AD=BC,CD=AB=6,
在Rt△ABC中,AB=6,∠BAC=30°,BC=ABtan∠BAC=2,
(1)在Rt△ADE中,AE=4,AD=BC=2,
∴DE==2
∴EC=6﹣2=4.
∴梯形ABCE的面积S=(EC+AB)BC=(4+6)×2=10.
(2)在Rt△ABC中,AB=6,∠BAC=30°,
∴AC=AB÷cos30°=4,
在矩形ABCD中,AB∥CD,
∴∠BAC=∠ACD,
∵∠BFA=∠CEA,
∴△ABF∽△CAE,
∴===.
科目:初中数学 来源: 题型:
【题目】下列各式由等号左边变到右边变错的有( )
①a﹣(b﹣c)=a﹣b﹣c
②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2
③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y
④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径.
(1)如图1,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是 ,∠B2的度数是 ;
(2)如图2,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,则∠B3的度数是 ;
(3)如图3,垂直于AD的n条弦B1C1,B2C2,B3 C3,…,BnCn把圆周2n等分,则∠Bn的度数是 (用含n的代数式表示∠Bn的度数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“Welcome to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字母o出现的频率是( )
A. 0.2 B. 0.4 C. 0.6 D. 0.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )
住院医疗费(元) | 报销率(%) |
不超过500元的部分 | 0 |
超过500~1000元的部分 | 60 |
超过1000~3000元的部分 | 80 |
…… |
(A)1000元 (B)1250元 (C)1500元 (D)2000元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com