精英家教网 > 初中数学 > 题目详情
如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角三角形纸片沿直线AD折叠,使点C恰好落在斜边AB上点E处.
(1)求AB的长;
(2)直接写出AE、BE的长及∠BED的度数;
(3)求CD的长.
分析:(1)由有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,利用勾股定理即可求得AB的长;
(2)由折叠的性质即可求得AE的长与∠AED的度数,继而求得BE的长与∠BED的度数;
(3)设CD=xcm,由勾股定理即可求得方程:x2+42=(8-x)2,解此方程即可求得答案.
解答:解:(1)∵在Rt△ABC中,两直角边AC=6cm,BC=8cm,
∴AB=
AC2+BC2
=10(cm);

(2)∵由折叠的性质可得:AE=AC=6cm,∠AED=∠C=90°,
∴BE=AB-AE=10-6=4(cm),∠BED=90°;

(3)设CD=xcm,
则DE=CD=xcm,BD=BC-CD=8-x(cm),
在Rt△BDE中,DE2+BE2=BD2
则x2+42=(8-x)2
解得:x=3.
故CD=3cm.
点评:此题考查了折叠的性质以及勾股定理.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,有一块直角三角形纸片,现将直角边AC沿直线AD折叠,使它落在斜边AB上,则点C与斜边AB的中点E正好重合,且BD=8cm,则AD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,有一块直角三角形纸片,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为
 

查看答案和解析>>

同步练习册答案