精英家教网 > 初中数学 > 题目详情

如图,AB为⊙O的直径,点C是⊙O上一点,AD平分∠CAB交⊙O于点D,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AC=3,DE=2,求AD的长.

(1)证明:连接OD,
∵AD为∠EAB的平分线,
∴∠EAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠EAD=∠ODA,
∴OD∥AE,
∵AE⊥ED,
∴OD⊥DE,
则DE为圆O的切线;
(2)∵DE为圆的切线,AE为圆的割线,
∴DE2=EC•EA=EC•(EC+AC),
∵AC=3,DE=2,
∴4=EC(EC+3),即EC2+3EC-4=0,即(EC-1)(EC+4)=0,
解得:EC=1,
则AE=AC+CE=3+1=4,
在Rt△AED中,AE=4,DE=2,
根据勾股定理得:AD=2
分析:(1)连接OD,由AD为角平分线得到一对角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OD与AE平行,由AE垂直于ED得到OD垂直于DE,即可得证;
(2)由ED为圆的切线,EA为圆的割线,利用切割线定理列出关系式,将AC与DE长代入求出EC的长,进而求出AE的长,在直角三角形AED中,利用勾股定理即可求出AD的长.
点评:此题考查了切线的判定,切割线定理,平行线的判定与性质,熟练掌握切线的判定方法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为
40m
40m

查看答案和解析>>

科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013

如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步练习册答案