如图,在直角坐标系中,以点A(
,0)为圆心,以
为半径圆与x轴相交于点B,C,与y轴相交于点D,E.
![]()
(1)若抛物线
经过点C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上有一点P,使得△PBD的周长最小,求点P的坐标;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.
(1)
,在;(2)
;(3)存在,(
,12).
【解析】
试题分析:(1)由已知条件先求出C,D两点的坐标,再把其横纵坐标分别代入抛物线的解析式求出b,c,再将点B坐标代入检验即可;(2)BD的长为定值,所以要使△PBD周长最小,只需PB+PD最小,连接DC,则DC与对称轴的交点即为使△PBD周长最小的点;(3)设Q(
,t)为抛物线对称轴x=
上一点,M在抛物线上,要使四边形BCQM为平行四边形,则BC∥QM且BC=QM,再分①当点M在对称轴的左侧时和①当点M在对称轴的右侧时,讨论即可.
试题解析:(1)∵OA=
,AD=AC=2
,∴C(3
,0),B(
,0).
又在Rt△AOD中,OA=
,∴OD=
.
∴D
.
又∵D,C两点在抛物线上,∴
,解得
.
∴抛物线的解析式为
.
又∵当
时,
,
∴点B(
,0)在该抛物线上.
(2)∵
,∴抛物线的对称轴方程为:x=
.
∵BD的长为定值,∴要使△PBD周长最小,只需PB+PD最小.
连接DC,则DC与对称轴的交点即为使△FBD周长最小的点,
设直线DC的解析式为y=mx+n,
,解得
.
∴直线DC的解析式为
.
在
中令x=
得y=
.
∴P的坐标为
.
(3)存在,
设Q(
,t)为抛物线对称轴x=
上一点,M在抛物线上,
要使四边形BCQM为平行四边形,则BC∥QM且BC=QM,且点M在对称轴的左侧,
过点Q作直线L∥BC与抛物线交于点M(x,t),由BC=QM得QM=4
,从而x=
,t=12.
故在抛物线上存在点M(
,12)使得四边形BCQM为平行四边形.
考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.勾股定理;5.轴对称的应用(最短线路问题);6. 平行四边形的判定.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| PP′ |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 6 |
| x |
| 3 |
| 2 |
| 6 |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com