精英家教网 > 初中数学 > 题目详情

(ab≠0)的所有可能的值有

[  ]

A.1个

B.2个

C.3个

D.4个

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)上述三个条件中,哪两个条件
①③
可判定△ABC是等腰三角形(用序号写出所有情形);
(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读(1)的推导并填空,然后解答第(2)题.
(1)当a<0,∵ax2+bx+c=a(x+
b
2a
2+A(2),又∵(x+
b
2a
2≥0,∴a(x+
b
2a
2≤0,ax2+bx+c=a(x+
b
2a
2+A≤A,即:无论x怎样变化,y=ax2+bx+c(a<0)的所有取值中,以A为最大;且在x=B时,y的值等于A,其中,用a,b,c表示,A=精英家教网
 
,B=
 

(2)为了绿化城市,我市准备在如图的矩形ABCD内规划一块地面,修建一个矩形草坪PQRC.按计划要求,草坪的两边RC与CP分别在BC和CD上,且草坪不能超过文物保护区△AEF的边界EF.经测量知,AB=CD=100m,BC=AD=80m,AE=30m,AF=20m.应如何确定草坪的位置,才能使草坪占地面积最大又符合设计要求并求出这个最大面积(结果保留到个位,解答时可应用(1)的结论)?

查看答案和解析>>

科目:初中数学 来源: 题型:

有一张长方形纸片ABCD,其中AB=3,BC=4,将它折叠后,可使点C与点A重合(图1),也可使点C与AB上的点E重合(图2),也可使点C与AD上的点E重合(图3),折痕为线段FG.
(1)如图1,当点C与点A重合时,则折痕FG的长为
 

(2)如图2,点E在AB上,且AE=1,当点C与点E重合时,则折痕FG的长为
 

(3)如图3,当C与AD上的点E重合,折痕FG与边BC、CD分别相交于点F、G,AE=x,BF=y,求y关于x的函数解析式,并写出函数定义域.
(4)如果折叠后,使点C与这张纸的边上点E重合,且DG=1,那么点E可以在边
 
 上(写出所有可能的情况).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图中所有的线段可分别表示为
线段AB,BC,AC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江二模)如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=3,BC=1,请在边AB上作出C,D两点的所有勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).
(2)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.
①当t=4、t=5时,直接写出点H的个数.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

查看答案和解析>>

同步练习册答案