精英家教网 > 初中数学 > 题目详情
(2013•绍兴模拟)如图,在平面直角坐标系中,A(1,0)、B(5,0)、C(6,3)、D(0,3),点P为线段CD上一点,且∠APB=45°,则点P的坐标为
(3+
7
,3)或(3-
7
,3)
(3+
7
,3)或(3-
7
,3)
分析:首先作等腰直角三角形ABE,使得∠AEB=90°,过点E作MN⊥AB于M,交CD于N,易得点P在以E为圆心,AE长为半径的圆与CD的交点,即PE=AE,然后利用等腰直角三角形的性质与勾股定理,即可求得点P的坐标.
解答:解:作等腰直角三角形ABE,使得∠AEB=90°,过点E作MN⊥AB于M,交CD于N,
∴AM=BM=
1
2
AB,
∵∠APB=45°=
1
2
∠AEB,
∴点P在以E为圆心,AE长为半径的圆与CD的交点,
即PE=AE,
∵A(1,0)、B(5,0),
∴AB=4,
∴AE=AB•cos45°=
2
2
×4=2
2

∴PE=2
2
,EM=AE•sin45°=
2
2
×2
2
=2,
∵C(6,3)、D(0,3),
∴CD∥OB,CD=6,
∴MN⊥CD,
∵OD⊥CD,OD⊥OB,
∴四边形OMND是矩形,
∴DN=OM=OA+AM=1+
1
2
AB=1+2=3,MN=OD=3,
∴EN=MN-EM=3-2=1,
在Rt△PNE中,PN=
PE2-EN2
=
(2
2
)
2
-1
=
7

∴点P的坐标为:(3+
7
,3)或(3-
7
,3).
故答案为:(3+
7
,3)或(3-
7
,3).
点评:此题考查了圆周角定理、等腰直角三角形的性质以及勾股定理.此题难度较大,解题的关键是准确作出辅助线,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•绍兴模拟)已知点(1,-2)在反比例函数y=
k
x
的图象上,那么这个函数图象一定经过点(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绍兴模拟)将正方形ABCD的各边三等分(如图所示),连接各分点.现在正方形ABCD内随机取一点,则这点落在阴影部分的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绍兴模拟)已知:圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绍兴模拟)为参加2010年“北京市初中毕业生升学体育考试”,小静同学进行了刻苦地练习,在测仰卧起坐时,记录下5次的成绩(单位:个)分别为:40,45,45,46,48.这组数据的众数、中位数依次是
45
45
45
45

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绍兴模拟)小刚在纸上画了一个面积为6分米2的正六边形,然后连接相隔一点的两点得到如图所示的对称图案,他发现中间也出现了一个正六边形,则中间的正六边形的面积是
2
2
分米2

查看答案和解析>>

同步练习册答案