精英家教网 > 初中数学 > 题目详情

已知:如图,四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD.
(1)连接AC,△ACD的形状是______;
(2)求证:BD2=AB2+BC2

解:(1)如图,连接AC.
∵∠ADC=60°,AD=CD,
∴△ACD是等边三角形;
故答案是:等边三角形;

(2)如图,以BC为边向形外作等边△BCE,连接AE.
由(1)知,△ACD是等边三角形,
则DC=AC,EC=BC,∠ACD=∠BCE=60°,
在△BCD与△ECA,

∴△BCD≌△ECA(SAS),
∴AE=BD,
∵∠ABE=90°,
∴在Rt△ABE中,有AB2+BE2=AE2,即AB2+BC2=BD2
分析:(1)根据全等三角形的判定定理“有一内角为60°的等腰三角形是等边三角形”推知△ACD是等边三角形.
(2)如图,以BC为边向形外作等边△BCE,连接AE.构造全等三角形(△BCD≌△ECA),然后根据全等三角形的性质、勾股定理证得结论.
点评:本题考查了等边三角形的判定、全等三角形的判定与性质以及勾股定理.注意此题的辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,四边形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
试求:(1)AC的长;(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,四边形ABCD内接于⊙O,且AB∥CD,AD∥BC,
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF
(1)求证:CE=CF;
(2)求∠CEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四边形ABCD绕直线AB旋转一周,则所得几何体的表面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD及一点P.
求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.

查看答案和解析>>

同步练习册答案