精英家教网 > 初中数学 > 题目详情
(2003•盐城)如图所示,在平行四边形ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°,AC=2,求BD的长.

【答案】分析:根据已知条件得到等腰直角三角形ABC,则AB=AC=2,又根据平行四边形的对角线互相平分,得到OA=1,根据勾股定理就可求得OB的长,再根据平行四边形的对角线互相平分,就可求得BD的长.
解答:解:∵四边形ABCD是平行四边形,∠DAC=45°,
∴∠ACB=∠DAC=45°,OA=AC=1,
∵AB⊥AC,
∴△ABC是等腰直角三角形,
∴AB=AC=2,
在Rt△AOB中,根据勾股定理得OB=
∴BD=2BO=2
点评:此题要求学生熟练运用等腰直角三角形的性质和勾股定理;熟悉平行四边形的性质.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2003•盐城)如图,已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,以AB为直径的圆经过点C及抛物线上的另一点D,∠ABC=60度.
(1)求点A和点B的坐标(用含有字母c的式子表示);
(2)如果四边形ABCD的面积为,求抛物线的解析式;
(3)如果当x>1时,y随x的增大而减小,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源:2003年江苏省盐城市中考数学试卷(解析版) 题型:解答题

(2003•盐城)如图,已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,以AB为直径的圆经过点C及抛物线上的另一点D,∠ABC=60度.
(1)求点A和点B的坐标(用含有字母c的式子表示);
(2)如果四边形ABCD的面积为,求抛物线的解析式;
(3)如果当x>1时,y随x的增大而减小,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源:2003年江苏省盐城市中考数学试卷(解析版) 题型:解答题

(2003•盐城)如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12m,它的坡角为45°,为了提高该堤的防洪能力,现把它改成坡比为1:1.5的斜坡AD.求DB的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:2003年江苏省盐城市中考数学试卷(解析版) 题型:填空题

(2003•盐城)如图,已知在△ABC中,∠ACB=90°,∠B=35°,为C为圆心、CA为半径的圆交AB于D点,则弧AD为    度.

查看答案和解析>>

同步练习册答案