精英家教网 > 初中数学 > 题目详情

如图,DE为⊙O的直径,AB为⊙O的弦,延长AB与直线DE交于C,且BC等于圆的半径,已知∠AOD=54°,则∠ACD=


  1. A.
    18°
  2. B.
    22.5°
  3. C.
    30°
  4. D.
    15°
A
分析:连接OB,连续利用三角形外角的性质和等腰三角形的性质得到∠AOD=∠OAB+∠OCA=3∠ACD即可求解.
解答:解:连接OB,
∵BC等于圆的半径,
∴OB=BC
∴∠ABO=2∠ACD,
∵OA=OB,
∴∠OAB=∠OBA
∴∠AOD=∠OAB+∠OCA=3∠ACD
∵∠AOD=54°,
∴∠ACD=18°.
故选A.
点评:本题考查了圆的认识及等腰三角形的性质,解题的关键是从复杂的图形中找到三角形的外角并正确的利用其性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海陵区模拟)如图是泰州凤城河边的“望海楼”,小明学习测量物体高度后,利用星期天测量了望海楼AB的高度,小明首先在一空地上用高度为1.5米的测角仪CD竖直放置地面,测得点A的仰角为30°,沿着DB方向前进DE=24米,然后登上EF=2米高的平台,又前进FG=2米到点G,再用1.5米高的测角仪测得点A的仰角为45°,图中所有点均在同一平面,FG∥DB,CD∥FE∥AB∥GH.
(1)求点H到地面BD的距离;
(2)试求望海楼AB的高度约为多少米?(
3
≈1.73
,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高(
2
≈1.4,
3
≈1.7
).

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(辽宁抚顺卷)数学(解析版) 题型:解答题

在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高().

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市开县西街中学九年级模拟考试数学试卷(一)(解析版) 题型:选择题

如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案