精英家教网 > 初中数学 > 题目详情
(2007•岳阳)已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.
(1)求A、C两点的坐标;
(2)求出抛物线的函数关系式;
(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;
(4)若E为⊙B劣弧OC上一动点,连接AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3?若存在,试求出点M的坐标;若不存在,试说明理由.

【答案】分析:(1)根据过A、C两点的直线的解析式即可求出A,C的坐标.
(2)根据A,O的坐标即可得出抛物线的对称轴的解析式,然后将A点坐标代入抛物线中,联立上述两式即可求出抛物线的解析式.
(3)直线与圆的位置关系无非是相切与否,可连接AD,证AD是否与AC垂直即可.由于B,D关于x轴对称,那么可得出∠CAO=∠DAO=45°,因此可求出∠DAB=90°,即DA⊥AC,因此AC与圆D相切.
(4)根据圆周角定理可得出∠AEO=45°,那么∠MOA=30°,即M点的纵坐标的绝对值和横坐标的绝对值的比为tan30°,由此可得出x,y的比例关系式,然后联立抛物线的解析式即可求出M点的坐标.(要注意的是本题要分点M在x轴上方还是下方两种情况进行求解)
解答:解:(1)A(-6,0),C(0,6)

(2)∵抛物线y=ax2+bx(a<0)经过A(-6,0),0(0,0).
∴对称轴x=-=-3,b=6a…①
当x=-3时,代入y=x+6得y=-3+6=3,
∴B点坐标为(-3,3).
∵点B在抛物线y=ax2+bx上,
∴3=9a-3b…②
结合①②解得a=-,b=-2,
∴该抛物线的函数关系式为y=-x2-2x.

(3)相切
理由:连接AD,
∵AO=OC
∴∠ACO=∠CAO=45°
∵⊙B与⊙D关于x轴对称
∴∠BAO=∠DAO=45°
∴∠BAD=90°
又∵AD是⊙D的半径,
∴AC与⊙D相切.
∵抛物线的函数关系式为y=-x2-2x,
∴函数顶点坐标为(-3,3),
由于D、B关于x轴对称,
则BD=3×2=6.

(4)存在这样的点M.
设M点的坐标为(x,y)
∵∠AEO=∠ACO=45°
而∠MOA:∠AEO=2:3
∴∠MOA=30°
当点M在x轴上方时,=tan30°=
∴y=-x.
∵点M在抛物线y=-x2-2x上,
∴-x=-x2-2x,
解得x=-6+,x=0(不合题意,舍去)
∴M(-6+,-1+2).
当点M在x轴下方时,=tan30°=
∴y=x,
∵点M在抛物线y=-x2-2x上.
x=-x2-2x,
解得x=-6-,x=0(不合题意,舍去).
∴M(-6-,-1-2),
∴M的坐标为(-6+,-1+2)或(-6-,-1-2).
点评:本题着重考查了待定系数法求二次函数解析式、图形旋转变换、切线的判定、圆周角定理等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2007年湖南省岳阳市中考数学试卷(解析版) 题型:解答题

(2007•岳阳)已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.
(1)求A、C两点的坐标;
(2)求出抛物线的函数关系式;
(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;
(4)若E为⊙B劣弧OC上一动点,连接AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3?若存在,试求出点M的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2007•岳阳)已知:等腰Rt△ABC中,∠A=90°,
(1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC;
(2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______;
(3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______.
请你在上述3个结论中,任选一个结论进行证明.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《三角形》(17)(解析版) 题型:解答题

(2007•岳阳)已知:等腰Rt△ABC中,∠A=90°,
(1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC;
(2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______;
(3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______.
请你在上述3个结论中,任选一个结论进行证明.

查看答案和解析>>

科目:初中数学 来源:2007年湖南省岳阳市中考数学试卷(解析版) 题型:解答题

(2007•岳阳)已知:等腰Rt△ABC中,∠A=90°,
(1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC;
(2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______;
(3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______.
请你在上述3个结论中,任选一个结论进行证明.

查看答案和解析>>

同步练习册答案