精英家教网 > 初中数学 > 题目详情

梯形ABCD四条边的长度分别为1cm,2cm,3cm,4cm,则梯形的面积为________.

cm
分析:首先过点D作DE∥AB交BC于E,易证得四边形ABED是平行四边形,即可得DE=AB,BE=AD,然后利用三角形三边关系分别分析1cm,2cm,3cm,4cm分别是那个边的值,即可确定AD=1cm,AB=2cm,BC=4cm,CD=3cm,然后过点C作CF⊥DE于F,过点D作DH⊥BC于H,利用等腰三角形的性质与勾股定理求得CF的长,又由三角形面积的求解方法,求得梯形的高DH的长,继而求得此梯形面积.
解答:解:过点D作DE∥AB交BC于E,
∵AD∥BC,
∴四边形ABED是平行四边形,
∴DE=AB,BE=AD,
若AD=1cm,AB=2cm,BC=3cm,CD=4cm,
则DE=2cm,EC=BC-BE=BC-AD=3cm-1cm=2cm,
∵DE+EC=2cm+2cm=4cm=CD,
∴此时不能组成三角形,既不能组成梯形,
同理可判定:AD=1cm,AB=2cm,BC=4cm,CD=3cm,
过点C作CF⊥DE于F,过点D作DH⊥BC于H,
∵EC=BC-BE=4cm-1cm=3cm,CD=3cm,DE=2cm,
∴DF=EF=1cm,
∴CF==2cm,
∵S△CDE=DE•CF=EC•DH,
∴DH===cm,
∴S梯形ABCD=(AD+BC)•DH=×(1+4)×=cm.
故答案为:cm.
点评:此题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质以及勾股定理的应用等知识.此题综合性很强,难度较大,解题的关键是注意分类讨论思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲,四边形ABCD是等腰梯形,AB∥DC.由4个这样的等腰梯形可以拼出图乙所示的平行四边形.
(1)求梯形ABCD四个内角的度数;
(2)试探梯形ABCD四条边之间存在的数量关系,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图甲,四边形ABCD是等腰梯形,AB∥DC.由4个这样的等腰梯形可以拼出图乙所示的平行四边形.
(1)求梯形ABCD四个内角的度数;
(2)试探梯形ABCD四条边之间存在的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:湖南省中考真题 题型:解答题

如图甲,四边形ABCD是等腰梯形,AB∥DC,由4个这样的等腰梯形可以拼出图乙所示的平行四边形.(1)求梯形ABCD四个内角的度数;
(2)试探梯形ABCD四条边之间存在的数量关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源:2010年山东省东营市中考模拟考试五校联考数学试卷(解析版) 题型:解答题

(2006•株洲)如图甲,四边形ABCD是等腰梯形,AB∥DC.由4个这样的等腰梯形可以拼出图乙所示的平行四边形.
(1)求梯形ABCD四个内角的度数;
(2)试探梯形ABCD四条边之间存在的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案