精英家教网 > 初中数学 > 题目详情
把两个整数平方得到的数“拼”起来(即按一定顺序写在一起)后仍然得到一个平方数,则称最后得到的这个数为“拼方数”.如把整数4,3分别平方后得到16,9,拼成的数“169”是13的平方,称“169”是“拼方数”.在下列数中,属于“拼方数”的是(  )
A.225B.494C.361D.1219
A、∵225=152,但22与5或2与25均不是两个整数平方得到的数,∴225不属于“拼方数”,故本选项错误;
B、∵494可以看作把整数7,2分别平方后得到49,4拼成的,但494不是整数的平方,∴494不属于“拼方数”,故本选项错误;
C、∵361可以看作把整数6,1分别平方后得到36,1拼成的数,是19的平方,∴361属于“拼方数”,故本选项正确;
D、∵1219可以看作把整数11,3分别平方后得到121,9拼成的,但1219不是整数的平方,∴1219不属于“拼方数”,故本选项错误.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、把两个整数平方得到的数“拼”起来(即按一定顺序写在一起)后仍然得到一个平方数,则称最后得到的这个数为“拼方数”.如把整数4,3分别平方后得到16,9,拼成的数“169”是13的平方,称“169”是“拼方数”.在下列数中,属于“拼方数”的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、(1)李刚同学在计算122和892时,借助计算器探究“两位数的平方”有否简捷的计算方法.他经过探索并用计算器验证,再用数学知识解释,得出“两位数的平方”可用“竖式计算法”进行计算,
如:122=144.其中第一行的“01”和“04”分别是十位数和个位数的平方,各占两个位置,其结果不够两位的就在“十位”位置上放上“0”,再把它们并排排列;第二行的“04”为十位数与个位数积的2倍,占两个位置,其结果不够两位的就在“十位”位置上放上“0”,再把它们按上面的竖式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分别是十位数和个位数的平方,各占两个位置,再把它们并排排列;第二行的“144”为十位数与个位数积的2倍,再把它们按上面的竖式相加就得到了892=7921.
①请你用上述方法计算752和682(写出“竖式计算”过程);
②请你用数学知识解释这种“两位数平方的竖式计算法”合理性.
(2)阅读以下内容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根据上面的规律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-l
(n为正整数);
②根据这一规律,计算:1+2+22+23+24+…+22008+22009=
22010-l
( n为正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

古埃及人用下面的方法得到直角三角形,把一根长绳打上等距离的13个结(12段),然后用桩钉钉成一个三角形,如图1,其中∠C便是直角.

(1)请你选择古埃及人得到直角三角形这种方法的理由
B
B
(填A或B)
A.勾股定理:在直角三角形边的两直角边的平方和等于斜边的平方
B.勾股定理逆定理:如果三角形的三边长a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形
(2)如果三个正整数a、b、c满足a2+b2=c2,那么我们就称 a、b、c是一组勾股数,请你写出一组勾股数
(6,8,10)
(6,8,10)

(3)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得到一个直角三角形(在图2中,只需画出示意图.)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)李刚同学在计算122和892时,借助计算器探究“两位数的平方”有否简捷的计算方法.他经过探索并用计算器验证,再用数学知识解释,得出“两位数的平方”可用“竖式计算法”进行计算,
如:122=144.其中第一行的“01”和“04”分别是十位数和个位数的平方,各占两个位置,其结果不够两位的就在“十位”位置上放上“0”,再把它们并排排列;第二行的“04”为十位数与个位数积的2倍,占两个位置,其结果不够两位的就在“十位”位置上放上“0”,再把它们按上面的竖式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分别是十位数和个位数的平方,各占两个位置,再把它们并排排列;第二行的“144”为十位数与个位数积的2倍,再把它们按上面的竖式相加就得到了892=7921.
①请你用上述方法计算752和682(写出“竖式计算”过程);
②请你用数学知识解释这种“两位数平方的竖式计算法”合理性.
(2)阅读以下内容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根据上面的规律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=______(n为正整数);
②根据这一规律,计算:1+2+22+23+24+…+22008+22009=______( n为正整数).

查看答案和解析>>

同步练习册答案