精英家教网 > 初中数学 > 题目详情
(2010•聊城)建于明洪武七年(1374年),高度33米的光岳楼是目前我国现存的最高大、最古老的楼阁之一(如图①).喜爱数学实践活动的小伟,在30米高的光岳楼顶楼P处,利用自制测角仪测得正南方向商店A点的俯角为60°,又测得其正前方的海源阁宾馆B点的俯角为30°(如图②).求商店与海源阁宾馆之间的距离(结果保留根号).

【答案】分析:利用30°的正切值可求得OB长,利用60°的正切值可求得OA长.OB-OA即为商店与海源阁宾馆之间的距离.
解答:解:∵两条水平线是平行的,
∴∠B=30°,∠PAO=60°.
∵PO=30,∠POA=90°,
∴OB==30
OA==10
∴AB=OB-OA=20
点评:解决本题的关键是借助俯角构造直角三角形,运用三角函数定义表示与所求线段相关的线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

建于明洪武七年(1374年),高度33米的光岳楼是目前我国现存的最高大、最古老的楼阁之一(如图①).喜爱数学实践活动的小伟,在30米高的光岳楼顶楼P处,利用自制测角仪测得正南方向商店A点的俯角为60°,又测得其正前方的海源阁宾馆B点的俯角为30°(如图②).求商店与海源阁宾馆之间的距离(结果保留根号).
精英家教网

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2010•聊城)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年山东省聊城市中考数学试卷(解析版) 题型:解答题

(2010•聊城)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年山东省聊城市中考数学试卷(解析版) 题型:解答题

(2010•聊城)建于明洪武七年(1374年),高度33米的光岳楼是目前我国现存的最高大、最古老的楼阁之一(如图①).喜爱数学实践活动的小伟,在30米高的光岳楼顶楼P处,利用自制测角仪测得正南方向商店A点的俯角为60°,又测得其正前方的海源阁宾馆B点的俯角为30°(如图②).求商店与海源阁宾馆之间的距离(结果保留根号).

查看答案和解析>>

同步练习册答案