精英家教网 > 初中数学 > 题目详情
7、已知抛物线y=ax2+bx+c(a≠0)的开口向上,并经过点(-1,2),(1,0).下列结论正确的是(  )
分析:根据抛物线y=ax2+bx+c(a≠0)的开口向上,并经过点(-1,2),(1,0),利用对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:根据二次函数y=ax2+bx+c(a≠0)的图象开口向上,并经过点(-1,2),(1,0).
可知函数的对称轴x>0.所以
A、当x>0时,函数值包括两部分增减性,故此选项错误;
B、当x>0时,函数值包括两部分增减性,故此选项错误;
C.存在一个负数x0,使得当x<x0时,函数值的增减性包括两部分;故此选项错误;
D.存在一个正数x0,使得当x>x0时,函数值y随x的增大而增大,故此选项正确,
故选:D.
点评:此题主要考查了二次函数的性质以及对称轴的判定.要先确定对称轴才能判断图象的单调性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案