【题目】如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是 .
【答案】5
【解析】解:如图,∵AD是∠BAC的平分线,
∴点B关于AD的对称点B′在AC上,
过点B′作B′N⊥AB于N交AD于M,
由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,
过点B作BE⊥AC于E,
∵AC=10,S△ABC=25,
∴ ×10BE=25,
解得BE=5,
∵AD是∠BAC的平分线,B′与B关于AD对称,
∴AB=AB′,
∴△ABB′是等腰三角形,
∴B′N=BE=5,
即BM+MN的最小值是5.
所以答案是:5.
【考点精析】本题主要考查了轴对称-最短路线问题的相关知识点,需要掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:
请根据统计图提供的信息回答以下问题:
(1)抽取的学生数为名;
(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有名;
(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的%.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,l1∥l2 , C1在l1上,并且C1A⊥l2 , A为垂足,C2 , C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1 , △ABC2的面积为S2 , △ABC3的面积为S3 , 小颖认为S1=S2=S3 , 请帮小颖说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个(记为A1,A2,A3),黑球2个(记为B1,B2).
(1)若先从袋中取出m(m>0)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:①若A为必然事件,则m的值为 ②若A为随机事件,则m的取值为
(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用树状图或列表法求这个事件的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:
(1)可能性最大和最小的事件分别是哪个?(填写序号)
(2)将这些事件的序号按发生的可能性从小到大的顺序排列: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列长度的三条线段能组成三角形的是( )
A.5cm 2cm 3cm
B.5cm 2cm 2cm
C.5cm 2cm 4cm
D.5cm 12cm 6cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a,b,c是△ABC的三条边的长度,且满足a2-b2=c(a-b),则△ABC是( )
A. 锐角三角形 B. 钝角三角形
C. 等腰三角形 D. 等边三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com