精英家教网 > 初中数学 > 题目详情

(本小题12分)已知抛物线p:和直线l:

(1)对下列命题判断真伪,并说明理由:

①无论k取何实数值,抛物线p总与x轴有两个不同的交点;

②无论k取何实数值,直线l与y轴的负半轴没有交点;

(2)设抛物线p与y轴交点为C,与x轴的交点为A、B,原点O不在线段AB上;直线l与x轴的交点为D,与y轴交点为C1,当OC1=OC+2且OD2=4AB2时,求出抛物线的解析式及最小值.

练习册系列答案
相关习题

科目:初中数学 来源:2015年人教版初中数学七年级下册5.2练习卷(解析版) 题型:选择题

如图所示,如果∠1=∠2,那么(  )

A.∠3=∠4

B.AD∥BC

C.AB∥CD

D.∠C=∠CDA

查看答案和解析>>

科目:初中数学 来源:2015年人教版初中数学七年级下册5.1.1练习卷(解析版) 题型:选择题

如图所示,直线l1,l2,l3相交于一点,下面对∠α、∠β、∠γ、∠θ的度数的判断完全正确的一组是(  )

A.∠α=90°,∠β=30°,∠γ=90°,∠θ=60°

B.∠α=∠γ=90.,∠β=60.,∠θ=60°

C.∠α=∠β=60°,∠γ=90°,∠θ=30°

D.∠α=∠γ=90°,∠β=60°,∠θ=30°

查看答案和解析>>

科目:初中数学 来源:2014-2015学年浙江省宁波市北仑区中考一模数学试卷(解析版) 题型:选择题

一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是--------( )

A.5:4 B.5:2 C. :2 D.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年浙江省宁波市北仑区中考一模数学试卷(解析版) 题型:选择题

下面几何图形中,一定是轴对称图形的有( )

A、1个 B、2个 C、3个 D、4个

查看答案和解析>>

科目:初中数学 来源:2014-2015学年浙江省杭州市拱墅区中考一模数学试卷(解析版) 题型:解答题

(本小题6分)求一元一次不等式组的整数解,将解得的整数分别写在相同的卡片上,背面朝上,随机抽取一张,不放回,再抽出一张,把先抽出的数字作为横坐标,后抽出的作为纵坐标,这样的点在平面直角坐标系内有若干个,请用列表或树状图等方法表示出来,并求出点在坐标轴上的概率.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年浙江省杭州市拱墅区中考一模数学试卷(解析版) 题型:选择题

在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα=.有下列结论:①△ADE∽△ACD; ②当BD=6时,△ABD与△DCE全等;③当△DCE为直角三角形时,BD=8;④3.6≤AE<10.其中正确的结论是( )

A.①③ B.①④ C.①②④ D.①②③

查看答案和解析>>

科目:初中数学 来源:2014-2015学年浙江省杭州市滨江区中考一模数学试卷(解析版) 题型:填空题

如图1为两个边长为1的正方形组成的格点图,点A,B,C,D都在格点上,AB,CD交于点P,则tan∠BPD= ,如果是n个边长为1的正方形组成的格点图,如图2,那么tan∠BPD= .

查看答案和解析>>

科目:初中数学 来源:2014-2015学年四川省阶段S校九年级联考二数学试卷(解析版) 题型:解答题

(9分)【问题引入】

几个人拎着水桶在一个水龙头前面排队打水,水桶有大有小.他们该怎样排队才能使得总的排队时间最短?

假设只有两个人时,设大桶接满水需要T分钟,小桶接满水需要t分钟(显然T>t),若拎着大桶者在拎小桶者之前,则拎大桶者可直接接水,只需等候T分钟,拎小桶者一共等候了(T+t)分钟,两人一共等候了(2T+t)分钟;反之,若拎小桶者在拎大桶者之前,容易求出两人接满水等候(T+2t)分钟。可见,要使总的排队时间最短。拎小桶者应排在拎大桶者前面。这样,我们可以猜测,几个人拎着水桶在一个水龙头前面排队打水,要使总的排队时间最短,需将他们按水桶从小到大排队.

规律总结:

事实上,只要不按照从小到大的顺序排队,就至少有紧挨着的两个人拎大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需t分钟,并设拎大桶者开始接水时已经等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者接满水一共等候了(m+T+t)分钟,两人共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交换位置,即局部调整这两个人的位置,同样可以计算两个人接满水共等候了 __ ___分钟,共节省了 _________分钟,而其他人的等候时间未变。这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者前,都可以这样局部调整,从而使得总等候时间减少。这样经过一系列调整之后,整个队伍都是从小到大排列,就达到最优状态,总的排队时间就最短.

【方法探究】

一般地,对某些涉及多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想方法就叫做局部调整法.

【实践应用1】

如图1,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?

解析:(1)先假定N为定点,调整M到合适位置,使BM+MN有最小值(相对的).

容易想到,在AC上作AN′=AN(即作点N关于AD的对称点N′),连接BN′交AD于M,则M点是使BM+MN有相对最小值的点.(如图2,M点确定方法找到)

(2)再考虑点N的位置,使BM+MN最终达到最小值.

可以理解,BM+MN = BM+MN′,所以要使BM+MN′有最小值,只需使 ,此时BM+MN的最小值为 .

【实践应用2】

如图,把边长是3的正方形等分成9个小正方形,在有阴影的两个小正方形内(包括边界)分别任取点P、R,与已知格点Q(每个小正方形的顶点叫做格点)构成三角形,求△PQR的最大面积,并在图2中画出面积最大时的△PQR的图形.

查看答案和解析>>

同步练习册答案