精英家教网 > 初中数学 > 题目详情
若使函数的自变量x的取值范围是一切实数,则下面的关系中一定满足要求的是( )
A.b>c>0
B.b>0>c
C.c>0>b
D.c>b>0
【答案】分析:函数的自变量x取值范围是一切实数,即分母一定不等于0,即方程x2-2bx+c2=0无解.即△=4b2-4c2<0,即可解得b、c的关系.
解答:解:∵函数的自变量x取值范围是一切实数,
∴分母一定不等于0,
∴x2-2bx+c2=0无解,
即△=4b2-4c2=4(b+c)(b-c)<0,
解得:c<b<-c或-c<b<c.
当c>b>0时,一定满足要求上面要求.
故选D.
点评:本题是函数有意义的条件与一元二次方程的解相结合的问题.函数表达式是分式时,考虑分式的分母不能为0.
练习册系列答案
相关习题

科目:初中数学 来源:辽宁省中考真题 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋90°转后得△ABO,点A′的对应点是点A,点B′的对应点是点B。
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E,设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S。
i)试求出S与x之间的函数关系式(包括自变量x的取值范围);
ii)当x为何值时,S的面积最大?最大值是多少?
iii)是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第26章《二次函数》中考题集(34):26.3 实际问题与二次函数(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若使函数数学公式的自变量x的取值范围是一切实数,则下面的关系中一定满足要求的是


  1. A.
    b>c>0
  2. B.
    b>0>c
  3. C.
    c>0>b
  4. D.
    c>b>0

查看答案和解析>>

同步练习册答案