精英家教网 > 初中数学 > 题目详情

阅读下面材料:

小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形, ÐAOBCOD =90°.若△BOC的面积为1, 试求以ADBCOC+OD的长度为三边长的三角形的面积.

              图1                        图2

小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长COE, 使得OE=CO, 连接BE, 可证△OBE≌△OAD, 从而得到的△BCE即是以ADBCOC+OD的长度为三边长的三角形(如图2).

请你回答:图2中△BCE的面积等于             

请你尝试用平移、旋转、翻折的方法,解决下列问题:

如图3,已知△ABC, 分别以ABACBC为边向外作正方形ABDEAGFCBCHI, 连接EGFHID

(1)在图3中利用图形变换画出并指明以EGFHID的长度为三边长的一个三角形(保留画图痕迹);

(2)若△ABC的面积为1,则以EGFHID的长度为三边长的三角形的面积等于        

 解:△BCE的面积等于   2   .                       

    (1)如图(答案不唯一):                                            

EGFHID的长度为三边长的

一个三角形是EGM .   

(2) 以EGFHID的长度为三边长的三角

形的面积等于  3    

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•博野县模拟)阅读下面材料:
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.

小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).
请你回答:图2中△BCE的面积等于
2
2

请你尝试用平移、旋转、翻折的方法,解决下列问题:
如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•海淀区二模)阅读下面材料:
小明遇到这样一个问题:
我们定义:如果一个图形绕着某定点旋转一定的角度α (0°<α<360°) 后所得的图形与原图形重合,则称此图形是旋转对称图形.如等边三角形就是一个旋转角为120°的旋转对称图形.如图1,点O是等边三角形△ABC的中心,D、E、F分别为AB、BC、CA的中点,请你将△ABC分割并拼补成一个与△ABC面积相等的新的旋转对称图形.

小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC面积相等的新的旋转对称图形.
请你参考小明同学解决问题的方法,利用图形变换解决下列问题:
如图3,在等边△ABC中,E1、E2、E3分别为AB、BC、CA 的中点,P1、P2,M1、M2,N1、N2分别为AB、BC、CA的三等分点.
(1)在图3中画出一个和△ABC面积相等的新的旋转对称图形,并用阴影表示(保留画图痕迹);
(2)若△ABC的面积为a,则图3中△FGH的面积为
a
7
a
7

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•宜兴市二模)阅读下面材料:
小明同学遇到这样一个问题:定义:如果一个图形绕着某定点旋转一定的角度α (0°<α<360°) 后所得的图形与原图形重合,则称此图形是旋转对称图形.如等边三角形就是一个旋转角为120°的旋转对称图形.如图1,点O是等边三角形△ABC的中心,D、E、F分别为AB、BC、CA的中点,请你将△ABC分割并拼补成一个与△ABC面积相等的新的旋转对称图形.小明利用旋转解决了这个问题(如图2所示).图2中阴影部分所示的图形即是与△ABC面积相等的新的旋转对称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题:
如图3,在等边△ABC中,E1、E2、E3分别为AB、BC、CA 的中点,P 1、P2,M1、M2,N1、N2分别为AB、BC、CA的三等分点.
(1)在图3中画-个和△ABC面积相等的新的旋转对称图形,并用阴影表示(保留画图痕迹);
(2)若△ABC的边长为6,则图3中△ABM1的面积为
3
3
3
3

(3)若△ABC的面积为a,则图3中△FGH的面积为
a
7
a
7

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•北京)阅读下面材料:
小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.
小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)
请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为
a
a

(2)求正方形MNPQ的面积.
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=
3
3
,则AD的长为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•南开区一模)阅读下面材料:小明遇到这样一个问题:如图1,△ABO和△CBO均为等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构成一个三角形,在计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而等到的△BCE即时以AD、BC、OC+OD的长度为三边长的三角形(如图2).
(I)请你回答:图2中△BCE的面积等于
2
2

(II)请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

同步练习册答案