精英家教网 > 初中数学 > 题目详情
已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△AˊBD.

(1)利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法);
(2)设D Aˊ与BC交于点E,求证:△BAˊE≌△DCE.
见解析
解:(1)作图如下:

(2)证明:∵四边形ABCD是平行四边形,∴∠A=∠B,AB=DC。
∵△ABD沿对角线BD翻折180°得到△AˊBD,
∴∠Aˊ=∠A,AˊB= AB。∴∠Aˊ=∠B,AˊB= DC。
又∵∠AˊEB=∠DEC,∴△BAˊE≌△DCE(AAS)。
(1)作法:①过点A作BD的垂线;
②以点B 为圆心,AB为半径画弧,交BD的垂线于点Aˊ;
③连接AˊB,AˊD。
则△AˊBD即为所求。
(2)由平行四边形和翻折对称的性质,应用AAS即可证明。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某人到瓷砖店购买一种正多边形的瓷砖,铺设无缝地板,他购买的瓷砖形状不可以是(   )
A.正三角形B.正四边形C.正六边形D.正八边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是
A.9cmB.12cmC.9cm或12cmD.不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.

(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转。当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是     
②设△BDC的面积为S1,△AEC的面积为S2。则S1与S2的数量关系是     
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想。
(3)拓展探究
已知∠ABC=600,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF =S△BDC,请直接写出相应的BF的长

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:      (写一个即可),并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列各组数可能是一个三角形的边长的是
A.1,2,4B.4,5,9C.4,6,8D.5,5,11

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。

(1)①写出图1中的一对全等三角形;②写出图1中线段DE、AD、BE所具有的等量关系;(不必说明理由)
(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,D、E、F分别是AB、BC、AC的中点,若△ABC的周长为30cm,则△DFE的周长为       cm.

查看答案和解析>>

同步练习册答案