精英家教网 > 初中数学 > 题目详情
12.如图,CD为⊙O的直径,弦AB交CD于点M,M是AB的中点,点P在$\widehat{AD}$上,PC与AB交于点N,∠PNA=60°,则∠PDC等于(  )
A.40°B.50°C.60°D.70°

分析 先根据圆周角定理得出∠P=90°,再由M是AB的中点可知CM⊥AB,由∠PNA=60°得出∠C的度数,进而可得出结论.

解答 解:∵CD为⊙O的直径,
∴∠P=90°.
∵M是AB的中点,
∴CM⊥AB.
∵∠PNA=60°,
∴∠C=90°-60°=30°,
∴∠PDC=90°-∠C=90°-30°=60°.
故选C.

点评 本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.(1)如图1,矩形ABCD中,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E,请找出图1中的一个等腰三角形,并证明结论.
(2)如图2,矩形ABCD中,AB=3,BC=2,点M为BC中点,连接AM,作∠AME=∠AMB,ME交CD于点E,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,矩形ABCD中,AB=4,BC=m(m>0).P为边BC上一动点(不与B、C重合),过P点作PE⊥AP交直线CD于E.
(1)求证:△ABP∽△PCE;
(2)当P为BC中点时,E恰好为CD的中点,求m的值;
(3)若m=12,DE=1,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.在平面直角坐标系中有以下几点:A(0,0),B(2,3),C(4,0),若以A、B、C为顶点,作一个平行四边形,请写出第四个顶点的位置坐标(2,-3)或(-2,3)或(6,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠ACB=Rt∠,点O在斜边AB上,以OB的长为半径的⊙O与BC交于点D,且AD与⊙O相切于点D.
(1)求证:∠CAD=∠ABC;
(2)若tan∠CAD=$\frac{\sqrt{2}}{2}$,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知如图,在平面直角坐标系中,点P是反比例函数y=$\frac{{k}^{2}}{x}$(x>0)的图象上的一点,分别过P作PA⊥x轴于点A,PB⊥y轴于点B,若四边形OAPB的面积为4,则k值为(  )
A.2B.±2C.4D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:($\frac{1}{x}$-$\frac{2}{x-1}$)÷$\frac{{x}^{2}+x}{1-2x+{x}^{2}}$,其中x的值从不等式组$\left\{\begin{array}{l}{\frac{1}{2}x+1>0}\\{2(x-1)≤x}\end{array}\right.$的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:($\frac{1}{2}$)-3+(-1)2017+$\frac{1}{2-\sqrt{3}}$-3sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:$\root{3}{8}$-2$\sqrt{32}$+(2$\sqrt{2}$)2

查看答案和解析>>

同步练习册答案